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Abstract

The aim of this master’s project is to study and implement operators for meta
model composition. The meta-models are expressed in Eclipse Modeling
Framework (EMF) [1] Ecore formalism and we should be able to compose
them in order to get as result composed meta models.

The objective is also to be able to compose bricks of domain concepts of
computer languages, as assignments, conditions or iterations, for getting a
composed meta model that will describe a new language.

Another part of the work, is to study the composition of the instances of
the meta model we are going to compose.

And in order to rely that with the aim of verification and testing, we
also have defined transformations of those domain concepts into Concurrent
Object Oriented Petri Nets (COOPN) [2] specifications, which is an object-
oriented specification language based on synchronized algebraic Petri nets.
This language allows the definition of active concurrent objects, and includes
facilities for sub-typing, sub-classing and genericity. It is used for testing and
verification.

This work is a part of the Model Transformation for Verification (MTV)
[3] project which is being developed by the Software Modeling and Verification
(SMV) [4] group at the University of Geneva.
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Chapter 1

Introduction

The main objective of this Master’s Project is to study and implement op-
erators for meta model composition.

In this chapter some concepts and keywords that are useful to understand
the work done during this Master’s Project are introduced.

1.1 Model-Driven Architecture

The Model-Driven Architecture (MDA) [5] is a software design approach,
proposed and sponsored by the Object Management Group (OMG) [6]. A
lot of different software design techniques have been proposed since the first
steps of the software engineering. So, the question we can ask ourselves is:
why is the OMG proposing MDA ?

The computer technologies progress and evolve in a very fast way. The
work of the engineers often consist in adapting projects developed months
ago with technologies that are not actual anymore. To solve this problem
and to try to develop projects without being dependent on the technologies
evolutions, MDA has been proposed. In fact MDA allows to separate design
from architecture and realization technologies, facilitating that design and
architecture can evolve independently.

The general idea of MDA methodology is to model at a high level of abstrac-
tion the logical and behavioral functionalities of a system after having spec-
ified the clients requirements in a Computation Independent Model (CIM).
This high level of abstraction is called Platform Independent Model (PIM)

8



1.2. Of Models and Meta Models 9

and its main objective is to allow the specified functional requirements to sur-
vive to the changes done by the realization technologies and architectures.
We can then transform the PIM to a Platform Specific Model (PSM). The
huge interest of this technique is that this transformation can be performed
automatically.

Some transformation softwares with the purpose of supporting MDA phi-
losophy are being developed - the main goal is to allow that the ideas of
specifying at a high-level of abstraction and then automatically generate dif-
ferent realizations of them can be a reality. Some of the most known softwares
that support the MDA approach are, among others, MetaEdit+ [7], Generic
Modeling Environment [8], ParadigmPlus [9] and DOmain Modeling Envi-
ronment [10]. The MTV is also one of the framework that supports MDA
approach although with the main goal of using the specification at a high-
level of abstraction in order to be able to perform transformations specifically
for software verification.

We can point that MDA can be seen as a good solution because when
evolution of technologies occurs (and usually the occur very often), we should
just need to regenerate the new PSM that respects the new technology. In
principle, this makes a great economy of time.

Another thing I can add about MDA after interesting myself on reading
what was written by specialized magazines, is that the MDA is seen as a
great solution for the future of the software engineering. But some people
seems to be not filled with enthusiasm. Some of their arguments are that
MDA requires to much qualifications and knowledges. It is a fact that the
development teams that will adopt MDA methodology will have to control
concepts and languages as Unified Modeling Language (UML), Object Con-
straint Language (OCL), CIM, PIM, etc... But is this really a problem ?
I don’t think so. In the informatics world, one of the principal rule is that
people are always having to learn new concepts, new technologies... that
is nothing new. Moreover I will say that this is the reason why computer
science makes such extraordinary progresses in a such fast way.

1.2 Of Models and Meta Models

A model is an abstraction of phenomena in the real world. In other words,
it is a theoretical construct that represents some processes or behaviors of
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a given system, with a set of variables and a set of logical and quantitative
relationships between them. There are a lot of modeling languages. Each
one have his own advantages and defects. Some are formal but harder to use,
other easier to understand but having ambiguity. For examples, Petri Nets,
Z or OCL are modeling languages. Actually, the more used and accepted in
the software development world is the Unified Modeling Language (UML) of
the OMG. Modeling a system is the next logical step after producing the
requirements documents. Knowing that approximately sixty per cent of the
part of a software development budget is alloted to software’s maintainability
(corrective, adaptive and perfective) [11] we can easily understand why good
modeling techniques and the Model-Driven Architecture (MDA) approach
are fundamental.

A meta model is yet another abstraction, highlighting properties of the model
itself. A model is said to conform to its metamodel like a program conforms
to the grammar of the programming language in which it is written. In other
words, a meta model is a collection of ”concepts” (things, terms, etc.) within
a certain domain. The OMG usually uses following modeling architecture to
present and explain the meta models the (also shown in Fig. 1.1 ) :

M0 level: Data layer contains usually source code derived from the M1 level
fro different program languages;

M1 level: Model layer, describes the information in M0 layer. In other
words, contains the models from which the source code in M0 layer is
generated. The models available in this layer can be transformed in
several different source code languages, depending only on the fact if
the languages support the concepts presented in the model;

M2 level: Meta model layer that is a description of the models in layer M1.
It is this meta model that defines the abstract syntax of a language
and details what artifacts can be present in the model;

M3 level: Meta meta-model layer are Meta Object Facilities (MOF) Ecore
themselves. In this approach the assumption is that MOF is self-
described. This means that we don’t need need another level for MOF
description. In summary, the M3 layer is the description of the Meta
model, i.e. the M2 layer.
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Figure 1.1. Architecture - Meta Object Facilities
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The meta meta models are one more step of abstraction. The meta meta
model describes the meta model in the same way that the meta model de-
scribes a model. The particularity consists on the fact that if we try to make
another step in the abstraction, we will find the same meta meta model. This
is why the meta meta models are said to be an auto-descriptive layer: the
meta meta model is self described.

There are different approaches and implementations for using meta mod-
eling techniques. One of them is the Meta Object Facilities (MOF) [12] sup-
ported by the OMG. Another one is the Eclipse Modeling Framework (EMF)
Ecore [1] that is proposed by Eclipse project. We will introduce Ecore that
is the meta model used by EMF in the next section.

As an illustration of this methodology take table 1.1

Table 1.1. Meta Modeling Architecture Layers with some examples

Meta-Level Description Examples
M0 Data / instances Records in a DB table,

instances of Java classes
(abc -instance of java.lang.String)

M1 Metadata / models Tables, columns in a database
(records in a system catalog),

concrete classes, methods,
fields in Java program

(java.lang.String instance of
Java Class language construct)

classes (abc -instance
of java.lang.String)

M2 Meta-Metadata/ Description of database
metamodels/ (definition of things

languages like Table, Schema, Column, etc.),
description of language constructs
(definition of Class, its attributes,

contained elements
methods, fields, etc.)

M3 Meta-metamodel MOF or Ecore
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For who might be interested on going deeper and reading more about
meta models and MOF, a good work has been developed by Stephane Heck
in his Bachelor’s report [3] from the University of Geneva. He writes about
the MOF architecture and gives a very interesting example in which he starts
with a model and climb trough the levels of the modeling architecture showed
above.

1.3 Eclipse Modeling Framework and Ecore

The EMF [1] [13] is a modeling framework and code generation facility for
building tools and other applications based on a structured data model. From
a model specification described in XML Metadata Interchange (XMI), EMF
provides tools and runtime support to produce a set of Java classes for the
model, a set of adapter classes that enable viewing and command-based edit-
ing of the model, and a basic editor.

The core EMF framework includes a meta model (Ecore) for describing mod-
els and runtime support for the models including change notification, persis-
tence support with default XMI serialization, and a very efficient reflective
Application Programming Interface (API) for manipulating EMF objects
generically.

Ecore is also a meta meta model because it is its own meta model, in
other words it describes itself. In Fig. 1.2 it is possible to see a simplified
representation of the Ecore meta model.

An instance of an Ecore metamodel will be a model that is composed
by ENamedElement objects. Some important elements are the EPackage,
Eclassifier and the ETyped Elements. We see that all the concepts needed
for modeling are described in Ecore.

1.4 Composition of Meta Models

We have seen on previous sections that we can have models and meta models.
The question is now why meta model composition? But before we answer
this question, we should explain what meta model composition means.

Given two meta models and a composition operator as inputs, a meta
model composition will produce as output a new composed meta model.
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Figure 1.2. Simplified Ecore meta model

The function applied for generating this new meta model will depend on
the selected composition operator. The description of what is done by each
implemented operator (union, merge, association, aggregation and inherit)
can be found on Chapter 3.3.

Why are we then interested on doing a meta model composition? That
allows to define meta models that defines bricks of domain concepts (as as-
signment, condition, or iteration) and then to compose those bricks for gen-
erating new languages. It can also be useful for refactoring of meta models.

The another interesting question is what happen then with the instances
of the input meta models? We need to define and implement the composition
of the models. That means that we need to make the models (instances of
meta models) conforms to the newly created meta model and to do an union
of those models. Without forgetting to apply the changes depending on the
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composition operator. This question is presented in Chapter 6.
What is also interesting if we have the transformation of those domain

concepts bricks into COOPN is to see what will happen then with the com-
posed meta model. In ideal case, if we compose the transformations into
COOPN, we will then be able to get a COOPN specification for the com-
posed meta model and be able to proceed to test and verifications.

In following chapters you will find all these subjects aborded with more
details.



Chapter 2

Description of the project

The main goal of this project is to study and implement operators for meta
model composition.

The meta models used should conform to the EMF Ecore meta model. A
tool for defining a composition specification and execute it must be done. The
tool must also do the composition of the instances of meta models (composi-
tion of models). A study on transformation of domain concepts to COOPN
is also required.

2.1 Project Phases

Here are the different phases that were identified before the start of the
project :

• 1) Implement transformation from XMI based description of COOPN
specification to COOPN specification;

• 2) Redefinition of the meta model for meta model composition;

• 3) Implement transformation of Assignment, Condition and Iteration
Domain Concept (DC) to COOPN specifications;

• 4) Implement the meta model composition operators for meta models
transformation;

• 5) Implement the transformation of instances of meta model for meta
model composition;

16



2.1. Project Phases 17

• 6) Writing of the Master Project report;

The first step is to implement a tool for transformation an XMI based
COOPN specification to a real COOPN specification.

Doing the second step (definition of meta model composition meta model)
will allow us to generate with Eclipse an editor for creating composition
specifications. For example, using this editor, we will be able to create an
instance of the meta model composition meta model that will contain the
union operator and two meta models paths.

The third step is some work on the domain concepts and their transfor-
mation to COOPN. This point should show how test and verification with
COOPN can be done with meta model composition. The work it contains is:

• Defining the 3 meta models describing the domain concepts of Assign-
ment, Condition and Iteration;

• Defining the corresponding COOPN specifications;

• Implementing the transformations from meta models to COOPN spec-
ifications.

The step four is working on the tool that will realize the composition of
meta models. This means:

• Defining the 5 operators (union, merge, inherit, association, aggrega-
tion);

• Implementing examples for each operators with ATLAS Transforma-
tion Language (ATL) [14] model transformation language;

• Generalizing the transformations extracting ATL templates (one per
operator);

• Implementing the tool for reading the composition specification and ex-
ecute the corresponding automatically generated ATL transformation;

The fifth step is implementing the tool for model (instances of meta mod-
els) composition. This means that we need to conform the models to the new
generated meta model and then to do an union of them applying the corre-
sponding composition operator modifications to it.



Chapter 3

Transformation from XMI to COOPN

This chapter presents the work done for the implementation of a tool for
transforming an XMI COOPN specification description into a COOPN spec-
ification launchable in the COOPNBuilder tool. The first section is a small
introduction to COOPN language and the second section is about the trans-
formation.

3.1 About COOPN Language

COOPN [2] is an object-oriented specification language based on synchro-
nized algebraic Petri nets. CoopnBuilder is an integrated development envi-
ronment designated to the support of concurrent software development based
on the COOPN language. Briefly, COOPN defines Petri Nets (PN) [15] and
coordination between PN using object-oriented approach.

The main characteristics of COOPN are:

• Declarative language: using prolog-like syntax, behavior of PN are de-
fined by rules. Transitions are specified with pre- and post- conditions;

• Algebraic Petri net based: the essential elements of a COOPN de-
fined system are place, transition(event) and token. They are extended
notion of classical place/transition nets because of their richness and
complicity. Its fairly easy to represent classical P/T nets and colored
Petri nets using COOPN, the inverse is often not possible;

• Object-oriented: a Petri net is encapsulated by means of COOPN class,
only defined methods/events are visible from exterior;

18
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• Concurrency: the semantic of COOPN guarantees the synchronization
of events of defined Petri nets, three primitive operators are: alterna-
tive, parallel and sequential;

• Coordination: COOPN context is a higher level of encapsulation, its
an environment model and specifies the connections of internal com-
ponents: objects (instances of classes) and sub-contexts. COOPN con-
texts do not define Petri nets but their compositions;

The execution of COOPN uses prolog-like interference engine.
COOPN can be used to model large, concurrent, transactional, distributed

systems and construct prototypes for these systems. CoopnBuilder provides
the facilities to edit, verify COOPN modules, compile them into java proto-
type and interpret, simulate the prototype.

There are three types of COOPN module: Abstract (Algebraic) Data
Type (ADT), Object and Context.

ADT represents data with no states and they are immutable. ADTs
have operations. Class has places, methods(visible transitions), non-visible
transitions and gates(outgoing events). Places may contain ADT data or
objects. Context has methods and gates. Methods are input events, gates
are output events. Both of them can have parameters, the type of parameters
can be ADT or COOPN class.

We define tokens using ADT with algebraic specifications, thus the type
of tokens are richer than colored Petri nets, in addition, tokens support op-
erations.

More information about COOPN can be found on the COOPN Blog [16]
or on the SMV Website [4].

3.2 XMI COOPN Specification to COOPN

Specification Transformation Tool

As for all transformation, we have an input and an expected output. In this
case, as shown in Fig. 3.1, we have a COOPN specification described in an
XMI format conforming to the COOPN language meta model and we want
as output the corresponding COOPN specification that should be opened in
COOPNBuilder in order to be able to generate the corresponding prototype
and run it.
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Figure 3.1. View of the transformation from XMI based description of a COOPN
specification to its COOPN specification.

3.2.1 Input: XMI COOPN Specification

The input of this transformation is an instance of the meta model of the
COOPN language.

The meta model for the COOPN language has been defined by Sergio
Coelho in his master thesis. For more information about this meta model,
please refer to his master’s report [17].

An instance of this meta model will contain elements as ADTs, Classes,
or Context. Each one of these elements possess an Interface for all Methods
we can call from the exterior and a Body for all the Places, Transitions,
Axioms and Methods that are accessible only from the inside of the element.
Detailed information about this can be found at SMV Group website.

You can see in Fig. 3.2 an example of an XMI COOPN Specification in
a tree view.

3.2.2 Output: COOPN Specification

The output of this transformation is a COOPN Specification package that
can be opened in the COOPNBuilder Tool.

An example of generated COOPN Specification opened the COOPN-
Builder Tool can be seen in Fig. 3.3. It is an example of specification for a
Drink Vending Machine.
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Figure 3.2. Example of XMI COOPN Specification: the drinks example.

3.2.3 Transformation Implementation

The implementation language that have been chosen for that transformation
is Java.

It is a one to one kind of transformation, as for each element of the
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Figure 3.3. Example of COOPN Specification: the drink vending machine. Gen-
erated with the XMI to COOPN Tool and opened in the COOPNBuilderTool.

instance of the COOPN meta model we are going to create the equivalent
element in COOPN language.

The Fig. 3.4 shows the class diagram for the tool.

Figure 3.4. Class Diagram for XMI to COOPN Tool.

There a class called XMI2COOPN that uses:
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• a TransformationController that allows to initialize the XMI resource
set and register the type of XMI file to handle with ( .ecore, .basic,
.simple, etc), to initialize models and dependencies (in the EMF API)
and to retrieve default Factories to create objects of these metamodels;

• an ExportCoopnADT for creations of ADTs;

• an ExportCoopnCLASS for creations of Classes;

• an ExportCoopnCONTEXT for creations of Contexts;

An interesting implementation issue was how to deal with the equations
in the COOPN condition, axioms and theorems that are present in ADTs,
Classes and Contexts.

You can find an example of expected axioms result in following listing.

Listing 3.1. Example of generated axioms with the recursive method.� �
Class CLASSContainer ;

2

Interface
4 Use

ADTStateSort ;
6 BlackTokens ;

Booleans ;
8 Type

typeconta ine r ;
10 Methods

giveDrink ;
12 i n i t : s t a t e s o r t ;

r e f i l l ;
14

Body
16 Places

Empty : blackToken ;
18 LowNumber : blackToken ;

OK : blackToken ;
20 i n i t i a l i z e d : boolean ;

In i t i a l
22 i n i t i a l i z e d f a l s e ;

Axioms
24 giveDrink : :

LowNumber @ −> Empty @;
26 giveDrink : :

OK @ −> LowNumber @;
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28 giveDrink : :
OK @ −> OK @;

30 r e f i l l : :
Empty @ −> OK @;

32 ( ( t h i s = Self ) = true ) & ( s = Empty) =>
i n i t Empty : :

34 i n i t i a l i z e d f a l s e −> i n i t i a l i z e d true , Empty @;
t h i s = Self = true & s = LowNumber =>

36 i n i t LowNumber : :
i n i t i a l i z e d f a l s e −> i n i t i a l i z e d true , LowNumber

@;
38 t h i s = Self = true & s = OK =>

i n i t OK: :
40 i n i t i a l i z e d f a l s e −> i n i t i a l i z e d true , OK @;

Where
42 s : s t a t e s o r t ;

t h i s : typeconta ine r ;
44

End CLASSContainer ;� �
The solution for implementing that has been to define a recursive method.

The terminal case is if the terms of the expression are not equation. If one or
both of the terms of an equation are equation themselves, we then proceed
to a recursion calling again this method on the equation term. The code
corresponding to the implementation of this can be found in Appendix.

A point that have been quite painfull when doing this transformation
has been the fact that the meta model for the COOPN language has been
changing. And in a lot of cases this has means to rework more than once
parts of the transformation. In the same time, it is clear that working on
this transformation has helped to perform the meta model as we were seeing
things that were not working.



Chapter 4

Transformation of Domain Concepts
to COOPN Specifications

This chapter presents how we have defined and transformed to COOPN [2]
specifications the Assignment, the Condition and the Iteration domain con-
cepts.

In the first section of this chapter are presented the defined meta models
for the domain concepts taken into consideration.

In the second section, the correspondant COOPN specification for each
domain concept is presented.

Finally, the last section is about the details of the transformation from
the meta model to the COOPN specification.

Remind that information about the COOPN language can be found on
previous chapter.

4.1 Domain Concepts Meta Models

This chapter first describes the meta models defined for the Assignment,
Condition and Iteration domain concept. It will then present the expected
COOPN result. And finally, it explains how we can transform these domain
concepts into defined COOPN specifications.

25
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4.1.1 Assignment Domain Concept Meta Model

An assignment is a domain concept, which is fundamental in computer pro-
gramming. An assignment is used in order to set or reset the value stored in
a storage location denoted by a variable name.

In Fig. 4.1 is the meta model done for the assignment domain concept.

Figure 4.1. Assignment Domain Concept Meta Model

The AssignmentDC class stays as a container that contains all the assign-
ments. It allows to describe more than one assignment in the same model.

The DCAssignment has a name that is used for being able to identify the
different assignments. Each assignment is composed of a Variable (with a
variable name), of at least one Value and of at least a Type.

Each Variable must have at least one value, but more values can be as-
sociated. That is in order to deal with assignment of arrays for example.

Each Value must be associated to a Type.
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Here is an example of a model that conforms to the Assignment meta
model. It stands for the following assignments:

• varA = 1;

• varB = true;

Find in Fig. 4.2 the tree view of the assignment model used for this
example.

Figure 4.2. Assignment Domain Concept Spec

4.1.2 Condition Domain Concept Meta Model

A condition is another fundamental concept for computer programming. A
condition allows the execution of a block of instructions if the evaluation of a
Boolean expression is true, or the execution of a different block of instructions
in the case the evaluation of the Boolean expression is false.

In Fig. 4.3 is the meta model for the condition domain concept.
As for assignments, the ConditionDC allows us to store in the same model

more than one condition.
The DCCondition has a name that is used for being able to identify the

different conditions. A DCCondition is a specialization of Instruction, which
means that a condition is an instruction. Each condition is composed of
one BooleanExpression, of positive condition instructions (the instructions
list to be executed if the Boolean expression is evaluated to true) and of
negative condition instructions (the instructions list to be executed if the
Boolean expression is evaluated to false). Both positive and negative lists of
instructions can be empty.
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Figure 4.3. Condition Domain Concept Meta Model

Let’s see an example of condition and it’s resulting description in an
instance of the defined meta model for the Condition Domain Concept pre-
sented before. Here is the condition instruction sample:

• if( x OR y AND z) then (a=1;);

In Fig. 4.4, you can see the corresponding instance of meta model that
represents the model for the above example.

Figure 4.4. Condition Domain Concept Spec

4.1.3 Iteration Domain Concept Meta Model

An iteration is another a concept for computer programming. An iteration
allows the execution of a block of instructions while the result of the evalu-
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ation of a Boolean expression is true. When the evaluation of the Boolean
expression is false, the process stops.

In Fig. 4.5 is the meta model for the iteration domain concept.

Figure 4.5. Iteration Domain Concept Meta Model

As for the other domain concepts, the IterationDC allows us to store in
the same model more than one iteration concept.

The DCIteration has a name that is used for being able to identify the
different iterations concepts. A DCIteration is a specialization of Instruction,
which means that an iteration is an instruction. Each iteration concept is
composed of one BooleanExpression and of Instructions. The instructions list
is the instructions to be executed while the Boolean expression is evaluated
to true. This list of instructions can be empty.

Let’s define a small example of iteration and see its corresponding instance
of meta model specification.

That is the example we are going to take into consideration:

• while(A smaller than 5) do (a++;);

In Fig. 4.6, you can see the corresponding instance of meta model that
represents the model for the above example.
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Figure 4.6. Iteration Domain Concept Spec

4.2 Domain Concepts COOPN Specifications

This section presents the results we are expecting into COOPN for each
domain concept. It shows the COOPN expected result and the algorithms
for generic transformations from domain concept to COOPN.

4.2.1 Assignment Domain Concept COOPN Specifica-
tion

We have a meta model for Assignment Domain Concept with an instance of
this meta model presented in a previous section.

In this section we are going to start by the presentation of what is the
expected result into COOPN for the example presented in that previous
section. After this is done, we will see the algorithm proposed to compute
automatically the transformation. For doing the transformation we can do it
implementing a Java module or using the Eclipse ATL [14] plug in for model
transformations.

The expected COOPN specification description:
As seen in previous chapter, an assignment is the process of setting or

resetting a value to a variable.
See Fig. 4.7.
We define a COOPN class called CLASSVariableRepository. This class

will contain all the variables of the assignment described in the model.
Each variable will have a COOPN class place. The name of this place is

the name of the correspondent variable. The content of the place will be the
storage place for the value of the assigned variable. The type of the place is
logically the type of the value that will be assigned to the variable.

Then we define a method in the interface of this class that will allow
us to set a value to a variable, which means the method will put a token
with the value of the corresponding variable to the place corresponding to
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Figure 4.7. View of the expected COOPN Class Variable Repository for assignment
domain concept

the variable. In a first attempt we tried to have one method for setting any
place. But, as we were faced to some problems in COOPN , we decided
finally to have one set method per variable. But here are the explanations
for a more generalized set method. The signature of this method is:

• set - - : varnames vartypes ;

The varnames type is defined by a COOPN ADT that enumerate the
names of the distinct variables of the model. The vartypes type is defined
by a COOPN ADT that inherit from all the types used in the assignment.
This allows us to have only one method for setting any place. For example,
if we want to set the value true to the place varB, we will need to call the
method set like this:

• set varB true ;

COOPN Axioms have been defined for defining the behavior of this
method.

Then we have defined a COOPN Context that has a method execute-
Assignment that is the method used to realize the assignment. When this
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method is called, it will execute all the assignments present in the assignment
model.

For example, if the model describes varA=1 and varB=true assignments,
the executeAssignment method will set varA 1 and set varB true in order
to set in the VariableRepository the values of the variables. This is done
sequentially but could have done in parralel as there are now some parallel
memories.

4.2.2 Condition Domain Concept COOPN Specifica-
tion

As seen in previous sections with the Condition Domain Concept Meta
Model, a condition contains three main elements:

• the boolean expression expressing the condition (the If statement);

• the instructions bloc to be executed in case the boolean expression is
evaluated to true (the Then statement);

• the instructions bloc to be executed in case the boolean expression is
evaluated to false (the Else statement);

We now need to define what a boolean expression is. For that, we first
need to study what an expression is in programming languages. Assuming
that we have Exp as the set of Expressions, Op the set of Operators, n as
the set of Numbers constants and Var the set of Variables, we can define an
Expression with the formula presented in Fig. 4.8.

Figure 4.8. Definition of an Expression

This helps to understand what an expression is, and is important if we
want to define what a Boolean Expression is. Indeed, a Boolean Expression
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is a subsort of the Exp set. It has his own logical operators and can be define
as in Fig. 4.9.

Figure 4.9. Definition of a Boolean Expression and of its evaluation

In other words, a boolean expression can be:

• terminal case: a boolean value;

• a composition of boolean expressions with a logical operator;

An important point is the evaluation of the boolean expression which is
defined in Fig. 4.9 and that explains that the evaluation a boolean expression
is equivalent to the evaluation of the composition of the evaluation of each
term of the expression.

So for example, if we want to evaluate the boolean expression (x or y
and z), we will need to evaluate the values of the x,y,z variables. So in
COOPN , we will have a CLASSVariableContainer as presented in previous
section (assignment domain concept) containing the values of those boolean
variables. So, we will have to getVarX, getVarY and getVarZ to be able to
do the evaluation of the boolean expression. Then, the evaluate method will
be able to perform the evaluation of (x or y) and then of (result(x or y) and
z).

After having introduced some theorical concepts, lets see now how we
can propose in COOPN an equivalent to the Condition Domain Concept
Meta Model. In COOPN specification, we are then going to define for each
condition the following COOPN elements:

• a Class for the boolean expression (*);
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• a Class for the positive bloc of instructions (the Then bloc);

• a Class for the negative bloc of instructions (the Else bloc);

• a Class for managing the conditions;

• a Context;

• an ADT for listing the conditions names;

(*) In a first attempt, we thaught that we were needing a Class for the
boolean expression, but in fact we don’t need this element as we don’t really
need to know the state of the boolean expression. We just need a method in
the ConditionManager for evaluation the Boolean Expression.

Let’s describe each elements of this list.
The positive and negative instructions bloc objects have both the same

structure. Each instruction of the bloc of instructions will be represented by
an internal transition. So we will have a sequence of places and transitions
that must be fired sequentially when the execute method of the Class is
called. We need to add a transition and place for the begin and the end of
the bloc, as we can have an empty bloc of instructions. The execute method
will synchronize the Begin and End methods for verifiying that all has been
working fine during the execution of the instruction. For the End method,
we need to have a token in the last instruction place. See Fig. 4.10.

See Fig. 4.11 for an example of empty bloc of instructions.
The ConditionManager Class have a method for doing the evaluation of

the Boolean Expression. It will do some getter methods for getting values of
variables of the boolean expression in the CLASSVariableRepository and will
do then the evaluation. The ConditionManager Class have also a method
execute. This method takes as parameter the name of a condition (type
defined with an ADT ). This method does the following as depicted in Fig.
4.12.:

• it test the name of the condition for selecting the corresponding objects;

• it calls the eval boolean expression method, and gets the value of the
evaluation;

• depending of the result of the evaluation, it will call the execute method
of the positive or of the negative instruction bloc Class;
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Figure 4.10. Graphic view of the COOPN Class for Instruction Bloc in Condi-
tion Domain Concept COOPN Specification - The transitions I1, I2, ..., In rep-
resents the n instructions of the instruction block and can be synchronized with
other objects as for example with the ClassVariableRepository in order to execute
an assignment.

The Context simply possess a method called doConditions that will exe-
cute in sequence the execute method for each condition.

4.2.3 Iteration Domain Concept COOPN Specification

For the Iteration Domain Concept, we can reuse notions and concepts de-
fined for the assignment and the condition domain concepts. Indeed, as seen
in previous sections with the Iteration Domain Concept Meta Model, an
iteration contains two main elements:

• the boolean expression expressing the condition (the while conditon);

• the instruction bloc to be executed in case the boolean expression is
evaluated to true (the do statement);

As for the condition domain concept, we have a boolean expression that
should be evaluated. Then, we can reuse the evaluation method defined for
condition domain concept.
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Figure 4.11. Graphic view of the COOPN Class for Instruction Bloc in Condition
Domain Concept COOPN Specification - In this case, the instruction block contains
no instruction. So we just have the begin and end methods.

Then, in case this result of this evaluation is true, we should execute a bloc
of instructions. For that, we can also reuse the work done for instructions
block for condition domain concept.

The small change concerns the IterationManager that should use a re-
curent execute method and the instructions could change the result of the
evaluation. The execute iteration method works as follows:

• 1) evaluation of the iteration condition;

• 2.a) if evaluated to false, that’s the stop condition;

• 2.b) if evaluated to true, we can execute the instruction bloc and se-
quentially call the iteration execute method again (that will start again
to point 1);

The instruction bloc should modify the result of the evaluation if we want
the iteration to have an end. For example, we can have a variable a initialized
to 1, and do an iteration that will increment the value of the variable a untill
the value of the a variable is less than 5. This is what is depicted in Fig.
4.13.
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Figure 4.12. Graphic view of the COOPN Condition Manager Class and interac-
tions with other objects. Example: if (x OR y) then (x=false;)



38Chapter 4. Transformation of Domain Concepts to COOPN Specifications

Figure 4.13. Graphic view of the COOPN Iteration Manager Class and interac-
tions with other objects. Example: while (x smaller than 5) then (x++;)

4.3 Domain Concepts Transformations

This section presents the implementation details about the meta model in-
stance to COOPN Specification transformation of the three domain concepts.
The transformations are coded in Java language.

4.3.1 Assignment Domain Concept Transformation

As input we have an instance of the AssignmentDC Meta Model.
We are going to create then:

• a COOPN Class that will be the Variable repository;
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• a COOPN Context that will contain a doAssignment method that will
execute in sequence all the assignments.

First we create the CLASSVariableRepository. Then, for each assignment
contained in the input instance we will create:

• a Place per variable which type will be the type of the Variable in the
instance of AssignmentDC meta model;

• a getter and setter methods for accessing and manipulating the place
content.

Note that for each type of variable, we have two possible case. If the
type is contained in CFC we then just need to add the Interface Use to the
Class. But if it is not a CFC Type, we also need to create an ADT to this
corresponding type (and create its sort and generators).

We can now create the COOPN Context. We need to create:

• the Interface Use (using the created CLASSVariableRepository, and
Types of places);

• an Interface method called doAssignment;

• an Object of type CLASSVariableRepository;

• an Axiom for expressing the fact that when the event doAssignment
occurs, we will then call in sequence the setter methods for each variable
that need to be assigned.

You can see in Fig. 4.14 an example of resulting generated COOPN
specification.

4.3.2 Condition Domain Concept Transformation

As input we have an instance of the ConditionDC Meta Model.
We are going to create then for each Condition:

• a COOPN Class for Positive Instruction Bloc;

• a COOPN Class for Negative Instruction Bloc;

• a COOPN Class for Condition Manager;
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Figure 4.14. Generated COOPN Specification by the transformation from Assign-
mentDC Meta Model.

• a COOPN Context that will contain a doConditions method that will
execute in sequence all the conditions.

The structure of the COOPN Classes for Instruction Blocs is the follow-
ing:

• a Place of CFC type BlackTokens called B (for begin) and, if needed
(not empty bloc of instructions), we will create places called Pi (with i
from 0 to number of instructions of the bloc) of type BlackTokens;

• a Begin and a End methods;
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• a set of Transitions called Ii (i from 0 to size of the Instruction set) -
this set can be empty in case of empty bloc of instructions;

• a set of Axioms for expressing the fact that the Begin method adds a
token to place B and synchronizes with Transitions (if there are some)
and that the method End will consume a token in the last place;

It will be possible, thinking in terms of composition of these transforma-
tions, to synchronize the Transitions Axioms with a CLASSVariableReposi-
tory in order to realize an instruction that could be of type of Assignment.

Please note that this instruction bloc structure can be reused for iteration
transformation presented in next subsection.

For the Condition Manager Class, we will have to create:

• an executeCondition method;

• two Objects of type of the Positive and Negative Instruction Bloc
Classes presented before;

• a set of Axioms for expressing that if the result of the evaluation of the
Boolean Expression is true we then call in sequence the begin and end
of the Positive Instruction Bloc and if it is evaluated to false we then
call the begin and end of the Negative Instruction Bloc;

The result of the Boolean Expression evaluation should be implemented in
the transformation. As if for example we have a smaller than 5, we will then
have to check in the content of the Place of the CLASSVariableRepository.

We can now create the COOPN Context. We need to create:

• the Interface Use;

• an Interface method called doConditions;

• an Object of type Condition Manager for each Condition;

• an Axiom for expressing the fact that when the event doConditions
occurs, we will then call in sequence the executeCondition of each Con-
dition Manager object.

You can see in Fig. 4.15 an example of resulting generated COOPN
specification.



42Chapter 4. Transformation of Domain Concepts to COOPN Specifications

Figure 4.15. Generated COOPN Specification by the transformation from Condi-
tionDC Meta Model.

4.3.3 Iteration Domain Concept Transformation

As input we have an instance of the IterationDC Meta Model.
We are going to create then for each Iteration:

• a COOPN Class for Instruction Bloc;

• a COOPN Class for Iteration Manager;

• a COOPN Context that will contain a doIterations method that will
execute in sequence all the iterations.

The structure of the COOPN Classes for Instruction Blocs is the same as
presented in previous section about Condition transformation.

For the Iteration Manager Class, we will have to create:

• an executeIteration method;

• an Object of type of Instruction Bloc Classe;
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• a set of Axioms for expressing that if the result of the evaluation of
the Boolean Expression is true we then call in sequence the begin and
end of the Instruction Bloc and call recursively the executeIteration
method;

The result of the Boolean Expression evaluation should be implemented
in the transformation. As if for example we have a smaller than 5, we will
then have to check in the content of the Place of the CLASSVariableReposi-
tory. For ending the recursion, we also need that the variable of the Boolean
Expression should be changed as instruction in the Instruction Bloc.

We can now create the COOPN Context. We need to create:

• the Interface Use;

• an Interface method called doIterations;

• an Object of type Iteration Manager for each iteration;

• an Axiom for expressing the fact that when the event doIterations oc-
curs, we will then call in sequence the executeIteration of each Iteration
Manager object.

You can see in Fig. 4.16 an example of resulting generated COOPN
specification.



44Chapter 4. Transformation of Domain Concepts to COOPN Specifications

Figure 4.16. Generated COOPN Specification by the transformation from Itera-
tionDC Meta Model.



Chapter 5

Meta Model Composition Tool

In this chapter, we will first start with a small introduction to ATL [14]
language. ATL is a language for model transformation developed by the
University of Nantes.

After that, you will find the problem approaches chosen for the different
parts of the meta model composition tool.

5.1 ATL Model Transformation Language

ATL [14] is the ATLAS INRIA AND LINA research group answer to the
OMG MOF [12] / Query/View/Transformation (QVT) [18] Request For
Proposal (RFP). It is a model transformation language specified both as
a metamodel and as a textual concrete syntax. It is a hybrid of declarative
and imperative. The preferred style of transformation writing is declarative,
which means simple mappings can be expressed simply. However, imperative
constructs are provided so that some mappings too complex to be declara-
tively handled can still be specified. Once complex mappings patterns are
identified, declarative constructs can be added to ATL in order to simplify
transformation writing.

An ATL transformation program is composed of rules that define how
source model elements are matched and navigated to create and initialize
the elements of the target models. The work on ATL is a collaboration
between the University of Nantes and Institut National de Recherche en
Informatique et en Automatique (France) (INRIA) and initially with TNI
company. ATL has been chosen as the model transformation technology

45
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for the ModelWare IST European project in collaboration with SINTEF
(Norway). It is currently being used by several research groups working in
different domains and also for teaching.

5.1.1 ATL Execution Engine Architecture

A model-transformation-oriented virtual machine has been defined and im-
plemented to provide execution support for ATL while maintaining a certain
level of flexibility. As a matter of fact, ATL becomes executable simply be-
cause a specific transformation from its metamodel to the virtual machine
bytecode exists. Extending ATL is therefore mainly a matter of specifying the
new language features execution semantics in terms of simple instructions:
basic actions on models (elements creations and properties assignments).

This flexibility is important for two main reasons: ATL will need to be
aligned with the QVT standard when it is adopted in 2005 and, as a research
project, it can this way easily benefit from newly defined features.

5.1.2 Available Developing Tools For ATL

An Integrated Development Environment (IDE) has been developed for ATL
on top of Eclipse: ATL Development Tools (ADT). It uses EMF to handle
models: to serialize and deserialize them, to navigate and to modify them.
A specific code editor, including syntax highlighting and an outline view of
the program, is implemented as a convenience.

This IDE also includes a specific ATL extension of the Eclipse debugging
framework enabling source-level debugging of transformation programs. Sin-
gle step, step over and breakpoints support makes it possible for the developer
to precisely control the execution of the transformation program being writ-
ten. When the execution is suspended, it is possible to navigate into source
and target models from the current context as well as into user-defined vari-
ables. ADT is about to be released as part of the Eclipse Generic Mapping
Tools (GMT) project under the Eclipse Public License (EPL).
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5.2 A Meta Model For Meta Model Compo-

sition

We defined a meta model for meta model composition. This meta model
describes the differents operators and elements needed for performing a meta
model composition.

With this meta model, we can then generate in Eclipse the classes for
having an editor. We can create instances of compositions with this editor
or modify them. Those instances are going to be the input of our tool for
automatical meta model composition.

The meta model for meta model composition can be seen on Fig. 5.1.
A composition is composed of at least one meta model, one operator and

composition parameters (for knowing if we need to compose the meta model
instances and/or transformations). The definition of the operators can be
found in a following subsection.
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Figure 5.1. Meta model for meta model composition
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5.3 Description Of Meta Model Operators

This section describes the semantic of the operators defined for meta model
composition. Its objective is to help understanding the meta model defined
for the meta model composition.

Here is a list of operators defined in a first attempt:

• Inherit;

• ImplementationInherit;

• InterfaceInherit;

• Containment;

• Association;

• Union;

• Merge;

• Difference;

But finally, we decided to implement only this list of operators for the
meta model composition tool:

• Inherit;

• Containment;

• Association;

• Union;

• Merge;

In the following sections, you will find descriptions for all the operators
defined. But finally we decided only to implement the previous list.

See the Fig. 5.2 of the meta model part describing the three Inherits
operators.

First, we should have some words about the fact that we have three
different Inherit operators.
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We can find in an article Metamodel Composition in the Generic Modeling
Environment [19] the following text:

’The Generic Modeling Environment (GME) metamodeling language is
based on UML class diagrams. However, to support metamodel composition,
some new operators are necessary.

The equivalence operator is used to represent the union of two UML class
objects. The two classes cease to be separate entities, but form a single class
instead. Thus, the union includes all attributes, compositions and associa-
tions of each individual class. Equivalence can be thought of as defining the
join points or composition points of two or more source metamodels.

New operators were also introduced to provide finer control over inheri-
tance.

When the new class needs to be able to play the role of the base class,
but its internals need not be inherited, we use interface inheritance. In this
case, all associations and those compositions where the base class plays the
role of the contained object are inherited.

On the other hand, when only the internals of a class are needed by a
subclass, we use implementation inheritance. In this case, all the attributes
and those compositions where the base class plays the role of the container
are inherited.

Notice that the union of these two new inheritance operators is the regular
UML inheritance as illustrated in the figure below.’

We can find in an article Advanced Topics in Database Research [20] the
following text:

’Implementation inheritance propagates all of the parents attributes, but
only the containment association - where the parent functions as the con-
tainer - to the child type. No other associations are inherited in this case.

Interface inheritance allows no attribute inheritance, but does allow full
association inheritance, with one exception: containment relations where the
parent functions as the container are not inherited.

Note: the union of the two special inheritance operators gives the common
inheritance.’

Lets now describe each one of the mentioned operators.
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Figure 5.2. Inherit Operators in meta model for meta model composition
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5.3.1 Inherit operator

The Inherit operator takes as parameters:

• A specialization class from one meta model;

• A specialized class from the other meta model;

With this operator, we are going to create the specialization relation
between the two classes and inheriting the attributes of the specialization
class to the specialized class. It is the inheritance relation as defined by
UML .

5.3.2 ImplementationInherit operator

The ImplementationInherit operator takes as parameters:

• A specialization class from one meta model;

• A specialized class from the other meta model;

With this operator, the children inherit all of the parent attributes, but
only the containment associations where the parent acts as the container.

Example: - Assuming that we have applied the ImplementationInherit
(notation triangle with a white circle as defined by Meta GME ) operator to
the class B1 from a Meta model and to the class X1 from the other Meta
model.

See the Fig. 5.3.

X1 inherits:

• The age attribute from B1;

• The association allowing object of type C1 to be contained in objects
of type B1 (X1 can contain C1 objects);

• The association allowing objects B1 to be contained in B1 (X1 can
contain B1 objects but not X1 objects);

• The D1 objects can contain B1 objects but not X1 objects;
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Figure 5.3. ImplementationInherit example

5.3.3 InterfaceInherit operator

The InterfaceInherit operator takes as parameters:

• A specialization class from one meta model;

• A specialized class from the other meta model;

This operator means that the inheritance allows no attribute inheritance,
but does allow full association inheritance, with one exception: containment
relations where the parent functions as the container are not inherited.

Example: - Assuming that we have applied the InterfaceInherit operator
to the class B2 from a Meta model and to the class X2 from the other Meta
model.

See the Fig. 5.4.
X2 inherits:

• The X2 objects can be contained in objects of type D2 and B2;

• No objects can be contained in X2 (not even other X2 objects);

• The age attribute is not inherited by X2;
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Figure 5.4. InterfaceInherit example

5.3.4 Containment

The Containment operator takes as parameters:

• A ContainerClass from one meta model;

• A list of ContainedClass (with association end lower and upper bounds)
from the other Meta model;

This operator simply creates one or various containment association be-
tween a class of the left Meta model and a list of classes of the right Meta
model.

5.3.5 Association

The Association operator takes as parameters:

• A Client class in one meta model with upper and lower association end
bounds;;

• A Suplier class from the other Meta model with upper and lower asso-
ciation ends bounds;

This operator creates an association relation between one class of the left
Meta model and one class of the right Meta model.
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5.3.6 Union

The Union operator takes as parameters:

• 2 Meta models;

This operator will consider all elements of the two Meta models as distinct
elements and makes the union between them.

Example: - Assuming that we are going to apply the Union operator to
those two meta models.

See the Fig. 5.5.

Figure 5.5. Union example 1

The question is what is going to happen with the Class called Item,
which is present in both meta models. For the union, we consider that those
two classes are distinct elements, so in the result composed meta model, we
are going to rename the class of the second meta model. Here is a picture
describing the result of the composition.

See the Fig. 5.6.
An important question that appears now is how we should rename the

class from the second meta model? We should be careful because we do not
want to give a name of a class that could already exist. In the picture for
the example, the new name is generated concatenating a RMM (stands for
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Figure 5.6. Union example 2

Right Meta Model) to the old name. This renaming convention should avoid
any problem.

We also need to rename all the associations names of the class affected
by the renaming. We can rename those associations with the same renaming
convention of adding a RMM to the old association name. This allows to
avoid problems when dealing with elements of meta model as there will be
elements for each association.

5.3.7 Merge

The Merge operator is a more refined Union. That means that, instead of
considering each element of the two Meta models as distinct, we want to deal
with the case of having elements considered as equal and that we can merge.

How can we decide that two elements of two distinct Meta models are
equal? And at which level are we talking about: class elements? Attribute
elements? Association elements?

Lets define what we understand by equality for each of these elements.

Class element equality: We define that two classes having the same class
name are equal.

Attribute element equality: We define that two attributes of two classes
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with the same class name are equal if and only if the attribute name and the
attribute type are equal.

Association element equality: We define that an association that links two
classes that are equal and that have the same source and target class names,
the same association name and the same association ends (multiplicity) are
equal.

So, now that we have defined the equality, we can define the Merge op-
erator. This operator makes an union with all the distinct elements but, if a
class from the left meta model is considered equal (according to our definition
of equality) to a class of the right meta model, we are going to merge this
class. This means that where there were two elements, in the result meta
model there will be only one.

Let see with some examples what cases we can have.
Example 1: - We assume that we are using the Merge operator between

those two meta models.
See the Fig. 5.7.

Figure 5.7. Merge example

We have here two classes that are equal because they have the same class
name (equality definition). So we know that we are going to merge those
classes. But, we see that we are confronted to some issues: - Should we do
an union of the attributes; - Should we do a merge of the attributes that
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are equal (with the defined attribute equality); - In the case we had also a
class Person with the same association to the Item class in the meta model
B, should we merged it also? - In the case we had also a class Person but
with an association that was not equal, should we still merge it? Should we
keep two different associations?

Lets take each case and see what the result of the operator is depending
on the case.

In this case, we assume that Item classes are equal and that Price at-
tributes are equal (same attribute name and same attribute type). So we get
a merged Item class with 3 attributes: name, idnumber and price. In this
case we merged the two classes that were equal (Item) and the two attributes
that were equal (price).

See the Fig. 5.8.

Figure 5.8. Merge example

The natural question we can have at this point is what would have hap-
pened if the price attributes were not equal having for example the same
name but different types. Lets assume for example that the price attribute
type in meta model A is of type String and that the type of the price attribute
in the meta model B is Integer as it can be seen in the next picture.

See the Fig. 5.9.
So in this case, we decided that the two attribute of the merged class
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Figure 5.9. Merge example

that are not equal but have the same name should be kept. But, we are
going to rename the attribute from the right meta model with the renaming
convention defined for the Union operator. The resulting meta model would
look like the following picture.

See the Fig. 5.10.

Now, we should see the case where we have an association merge. Look
at the picture below.

See the Fig. 5.11.

In this case, we clearly see that we are going to merge the classes Item
and Person, all the attributes of these classes that are equal (same name and
same type) and also the association called person which is equal because it
has same name, same target and source names and same association ends
multiplicity.

In this case the result can be seen on next picture, which is the same as
for the precedent case.

See the Fig. 5.12.

But, this example makes us think on a new possible issue. What would
have happened is the new class in the right meta model called Person had a
different name? Lets study this case in the following picture.

See the Fig. 5.13.
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Figure 5.10. Merge example

Figure 5.11. Merge example

Here we have a class Client with an association called person. We should
manage the fact that when we are going to merge those two meta models
we are going to have in the resultant composed meta model to deal with
the problem of having two different association with the same name. In this
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Figure 5.12. Merge example

Figure 5.13. Merge example

case, we are going to rename the association name from the right meta model,
which will give us the result as presented in the picture below.

See the Fig. 5.14.

There is still one case we have to look at. In the next picture we have
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Figure 5.14. Merge example

the case where we are going to merge the classes Persons and Items but the
association names are not the same.

See the Fig. 5.15.

Figure 5.15. Merge example
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We can see that the associations are not equal because their names are
not the same (person in left meta model, client in the right meta model).
So, as result we are going to merge the classes, some of the attributes as
described before, but we cannot merge the association. So the result will
look as presented in this picture.

See the Fig. 5.16.

Figure 5.16. Merge example

5.3.8 Difference

The Difference operator allows producing a new meta model with all the
elements that are considered as different in the 2 meta models. Two class
elements are different if and only if they are not equal (considering our equal-
ity definition). This means that all the classes that have the same name will
not be present in the resulting composed meta model.
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5.4 Transformation Of Meta Models With Op-

erators

In this section we will see how the implementation of the operators for meta
model composition have been implemented. The idea is to develop a tool that
will take as input two meta models (which conforms to the Ecore meta meta
model) and an operator and will produce as output a resulting meta model
(which will conform to Ecore too) that will be the result of the composition
of the two input meta models using the chosen operator.

This tool is developed in Java but uses the ATL language and the ATL
Tool API for executing some predefined ATL transformation templates. In
the following subsection you will find the main idea. Then each ATL transfor-
mation template will be presented. In the last subsection, some information
and tips will be given about the Java tool implementation.

5.4.1 Meta Model Composition Tool - Main Idea

The tool for meta model composition takes as input two meta models (con-
forming to Ecore) and an operator name and produces as output the com-
posed meta model (conforming to Ecore). The Fig. 5.17 presents the flow
chart of this tool and helps to understand what are the main processes of the
tool.

The user indicates the tool two meta models paths (the MM abbreviation
in LeftMM and RightMM stands for Meta Model) and the operator he wants
to use for the meta model composition.

The tool will then select the corresponding ATL transformation template
depending on the given composition operator. An ATL transformation tem-
plate has been defined for each operator. Those ATL transformations are
fully presented in the following subsection.

Once the good ATL transformation template has been selected and loaded,
the tool will adapt it and generate an ATL file that will allow the ATL trans-
formation of the meta models to the composed meta model.

Now, using the ATLCompiler class defined by ATL developpers, the tool
compile the specific ATL transformation file. This produces an ASM file.

The idea is now to finally use the ATLLauncher class in order to launch
the ATL transformation. This produce the composed meta model, which is
the expected output.
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Figure 5.17. Flow Chart for Meta Model Composition Tool

The tool produces also a file that will be containing rules that will help us
for the instances of meta model composition transformation. This instances
transformation is performed in another tool presented further.

5.4.2 Some ATL Tips and Advices

As explained in previous subsections, ATL Transformation Templates have
been defined for the meta model composition tool. Those templates have
been defined using examples and those examples are presented in this sub-
section. For each ATL transformation, we take as input the two meta models
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(conforming to Ecore meta meta model) we produce as output the result of
the composition with the operator which is a new meta model (conforming
to Ecore too). Let’s describe those ATL transformation with examples in the
following sections.

Each operator has already been defined in details in previous chapters.
Before we get into explaining each transformation, some general ATL tips
and advices are given in following chapters.

ATL Transformation - Difficulties and Solutions

Here are some tips about how to use the ATL Eclipse Plugin. This infor-
mation is fruit of my experience while learning and trying to get those ATL
transformations working. I hope this will help people interested in trying
meta model transformation with ATL.

1 - How to launch ATL transformation with multiple source pat-
terns?

For meta model composition with ATL, we have two meta models as inputs
and that produces a composed meta model as output. In order to be able in
ATL to do transformation with multiple inputs models (in our case the left
and right meta models) you should add the following line at the top of your
transformation definition:

– @atlcompiler atl2006
Thanks to Luis Pedro and Adil Anwar from the ATL newsgroup [21] for

this tip.

2 - How to launch ATL Ecore to Ecore transformation

ATL transformation is widely used for model transformation. In this case,
we define the input and output models and the meta models to which they
conforms to. But, for an Ecore to Ecore transformation, as for meta model
composition, the input and output models are in fact meta models and they
conform to the Ecore meta meta model.

To launch an Ecore to Ecore ATL transformation, don’t forget to check
the ”is meta meta model” option in the Run Configuration of the ATL Eclipse
plugin. If you don’t do that, you will get an error saying that allInstances
operation could not be found.
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See Fig. 5.18 to see an example of Ecore to Ecore transformation Run
Configuration.

Figure 5.18. ATL Eclipse Plugin Run Configuration ’is metametamodel’ option
selected for Ecore to Ecore transformation - Meta model Union run configuration
example.

3 - ATL lazy rules

In ATL transformation, we should define rules that will say what to produce
and to do when a pattern is found in the source model or meta model. For
example, in our Ecore meta model composition examples we defined a lazy
rule for dealing with EClasses from the right meta model.

In this case, we are defining union of meta models. So we are going to
define in the ATL transformation all the information of left meta model must
be copied to resulting meta model. And for right meta model information,
we can copy all the information but renaming the classes that have the same
name than a class from left meta model.

This means that, before copying information from right meta model, we
need to check if the name of the EClass is the same than one of the EClass
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contained in the left package. That was a problem because with simple rules
I was not finding any way of getting this information.

So for doing that, we need to use a lazy rule because we need to get
information from the left meta model EPackage.

The use of lazy rules for the union ATL transformation example can be
seen in code listing in Appendix A.

For more information about lazy rules and other types of ATL rules,
please consult the ATL User Manual [22].

For more details about the Union ATL Transformation, please see the
corresponding paragraph.

4 - ATL entrypoint and endpoint

While defining my ATL meta model composition transformations, I have
been faced to another problem. In the case of the union of meta models,
when classes from left and right meta model were the same, we must rename
the class name of the element coming from the right meta model.

Then a new problem appears. If you rename a class, you will have to
adapt the associations (EReferences) of the renamed class. That seems to be
easy said like that, but the problem is that for setting the good link for the
EReference in the resulting meta model, some times we are trying to make
the new ereference pointing to an EClass that has still not been created by
the ATL Transformation!

In order to avoid that, we need to use an endpoint rule as can be seen in
the following code listing.

We can now see in detail each one of the ATL transformation correspond-
ing to the different composition operators.

Listing 5.1. Example of endpoint rule in ATL Transformation for Union operator� �
. . .

2

−− EXECUTION OF DELAYED ACTIONS
4

endpoint rule EndRule ( ) {
6 do {

−− renaming and modi fy ing eA t t r i b u t e s
8 f o r ( dta in thisModule . attributesFromResultMM ) {

dta . eType <− i f ( thisModule . classesFromRMM . in c l ude s ( dta .
eType . name) )

10 then



5.4. Transformation Of Meta Models With Operators 69

(
12 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = dta .

eType . name) )
)

14 else
(

16 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = ( dta .
eType . name + ’ RMM’ ) ) )

)
18 endif ;

}
20 −− renaming and modi fy ing eReferences

f o r ( dta in thisModule . referencesFromResultMM ) {
22 −− we can now rename the eReference name

dta . name <− i f ( thisModule . referencesNamesFromLMM . in c l ude s (
dta . name) )

24 then
( dta . name+’ RMM’ )

26 else
( dta . name)

28 endif ;
−− and modify the b ind ing to the good EClass

30 dta . eType <− i f ( thisModule . classesFromRMM . in c l ude s ( dta .
eReferenceType . name) )

then
32 (

(MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name =
dta . eReferenceType . name) )

34 )
else

36 (
(MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = (

dta . eReferenceType . name + ’ RMM’ ) ) )
38 )

endif ;
40 }

}
42 }� �

The endpoint rule allows to execute some action at the end of the transfor-
mation process. In the example all the eAttributes and eReferences readapt-
ing are done in the endpoint rule as it could not be done before as we need
to have in the result meta model all the resulting EClasses created.

For more information about entry and end points rules and other types
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of ATL rules, please consult the ATL User Manual [22].

5.4.3 ATL Transformations Templates

Here are described all the defined templates for each operator.

ATL Transformation for Inherit Operator

The Inherit operator produces as result meta model a meta model with the
content of left and right meta models and will add an Inheritance relation
between a class of left meta model and a class of right meta model.

By default, the class in the left meta model is the Super Class and the
class of the right meta model will play the role of the Specialized Class.

The ATL transformation for that is pretty easy to understand. In the
’init’ rule we just create the resulting EPackage, set its name and copy in it
the eClassifiers of left and right meta model.

Then, we simply create in the resulting meta model all the EClasses,
EAttributes and EReferences of both meta models with rules.

In order to create the inheritance link, we just need to add a eSuperType
to the corresponding EClass from the right meta model. This is done in the
’CLASSRight’ ATL rule. As you can see in the following code listing, an
EClass from right meta model will produce the corresponding EClass for the
result meta model, but, in the ’do’ section, we defined that if the EClass
name from right meta model is equal to the name of the class we want to
be the specialization of the Inheritance relation, we will then add to it an
eSuperType which will be the class of the resulting meta model coming from
the left meta model indicated by the usage of the operator.

You can take a look to the Inherit Operator Template in Appendix A.

In this example, we worked with AssignmentDC and ConditionDC (DC
stands for Domain Concept, and the meta models can be seen in the cor-
responding chapter) meta models. We supposed that a user wants to call
the transformation for creating an Inheritance realtion between the Assign-
mentDC Class of the left meta model and the Instruction Class of the right
meta model (the Instruction class being then the specialized class.

See AssignmentDC meta model in Fig. 5.19.

See ConditionDC meta model in Fig. 5.20.

See AssignmentDCInheritConditionDC meta model in Fig. 5.21.



5.4. Transformation Of Meta Models With Operators 71

Figure 5.19. Assignment Domain Concept Ecore meta model

So the question now, is how can we get from this specific ATL transfor-
mation example a Template for our Meta model Composition tool? We will
just remove the content of the ’do’ part of the CLASSRight rule and the tool
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Figure 5.20. Condition Domain Concept Ecore meta model

will have to replace the specific to inputs meta models names of classes for
creating the right inheritance relation requested by the user.

Please note that all the union problematic for this operator (same class
names in left and right meta model for example) are not treated by us, it
depends on ATL launcher and on the way they manage this type of problems.

For transformation of instance of meta models, the information we need
to know is only the two class names. So the tool will generate a file with
this useful information. For more details on instances transformation, please
refer to the corresponding chapter.



5.4. Transformation Of Meta Models With Operators 73

Figure 5.21. AssignmentDCInheritConditionDC Ecore meta model, result of the
ATL transformation

ATL Transformation for Containment Operator

The Containment operator produces as result meta model a meta model
with the content of left and right meta models and will add a containement
relation between a class of left meta model and one or more classes of right
meta model.

The class from the left meta model is the Container and the classes of
the right meta model will play the role of the Contained.

The ATL transformation for that is also easy to understand. In the ’init’
rule we just create the resulting EPackage, set its name and copy in it the
eClassifiers of left and right meta model.

Then, we simply create in the resulting meta model all the EClasses,
EAttributes and EReferences of both meta models with ATL rules.

The ATL solution found for creating the containment relation is the fol-
lowing. Left EClasses are normally copied to resulting meta model. But for
classes from the right meta model, we defined two ATL rules called ’CLASS-
Right1’ and ’CLASSRight2’.
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The first rule will take the classes from right meta model that are the
contained classes. So for those classes, we create the resulting EClass plus
an EReference for the containment relations. Why are we creating the eRef-
erence at this point? This is because when creating the containment eRefer-
ence, we give it the name of the eClass, we set the lower and upper bounds,
and the more importante we set the eType of the containment which is the
freshly created EClass. We then also add the containment eReference to a
list because we will then need to add those new eReference to the Container
class from the left meta model. This is done in the delayed actions in the
endpoint ATL rule.

The second rule (’CLASSRight2’ ATL rule) will match all the classes
from right meta model that are not contained elements and simply create
the resulting EClass in the composed meta model.

You can take a look to the Containment Operator Template in Appendix
A.

In this example, we worked with AssignmentDC and ConditionDC (DC
stands for Domain Concept, and the meta models can be seen in the cor-
responding chapter) meta models. We supposed that a user wants to call
the transformation for creating a Containment relation between the Assign-
mentDC Class of the left meta model (acts as Container) and the Instruction
Class and the BooleanExpression Class of the right meta model as contained
classes

See AssignmentDC meta model in Fig. 5.19.
See ConditionDC meta model in Fig. 5.20.
See AssignmentDCContainementConditionDC meta model in Fig. 5.22.
So the question now, is how can we get from this specific ATL trans-

formation example a Template for our Meta model Composition tool? We
simply need to rewrite the EReference creation part of the ’CLASSRight2’
ATL rule adapting it to the number and names of contained classes at one
hand, to adapt also the ’CLASSRight1’ rule and modify the endpoint rule
setting the name of the requested Container class from the right meta model.

Please note that all the union problematic for this operator (same class
names in left and right meta model for example) are not treated by us, it
depends on ATL launcher and on the way they manage this type of problems.

For transformation of instance of meta models, the information we need to
know is only the classes names concerned by the containmnent relation newly
created. So the tool will generate a file with this useful information. For
more details on instances transformation, please refer to the corresponding
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Figure 5.22. AssignmentDCContainementConditionDC Ecore meta model, result
of the ATL transformation

chapter.

ATL Transformation for Association Operator

The Association operator produces as result meta model a meta model with
the content of left and right meta models and will add an association relation
between a class of left meta model and a class of right meta model.

The ATL transformation for that is also easy to understand. In the ’init’
rule we just create the resulting EPackage, set its name and copy in it the
eClassifiers of left and right meta model.

Then, we simply create in the resulting meta model all the EClasses,
EAttributes and EReferences of both meta models with ATL rules.

The ATL solution found for creating the association relation is the fol-
lowing. Left EClasses are normally copied to resulting meta model. But for
classes from the right meta model, we defined two ATL rules called ’CLASS-
Right1’ and ’CLASSRight2’.
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The first rule will take the class from right meta model that is the supplier
class. For this class, we create the resulting EClass plus an EReference for the
association relation. Why are we creating the eReference at this point? This
is because when creating the containment eReference, we give it the name
of the eClass, we set the lower and upper bounds, and the more important
we set the eType of the association which is the freshly created EClass. We
then also add the association eReference to a list because we will then need
to add those new eReference to the supplied class from the left meta model.
This is done in the delayed actions in the endpoint ATL rule.

The second rule (’CLASSRight2’ ATL rule) will match all the classes
from right meta model that are not the supplier element and simply create
the resulting EClass in the composed meta model.

You can take a look to the Association Operator Template in Appendix
A.

For a generic template, we only need to fix the name of the supplier and
of the supplied classes.

Please note that all the union problematic for this operator (same class
names in left and right meta model for example) are not treated by us, it
depends on ATL launcher and on the way they manage this type of problems.

For transformation of instance of meta models, the information we need to
know is only the classes names concerned by the containmnent relation newly
created. So the tool will generate a file with this useful information. For
more details on instances transformation, please refer to the corresponding
chapter.

ATL Transformation for Union Operator

The Union operator produces as result meta model a meta model with the
content of left and right meta models and will rename all the elements of
right meta model that are already in left meta model.

The ATL transformation for that simply copy elements from left and right
meta models and renames classes that need to be renamed. As endpoint rules
we manage to rename and correct all the eAttributes, eReferences and eTypes
that shoul be renamed.

You can take a look to the Union Operator Template in Appendix A.
For a generic template, nothing is needed.
For transformation of instance of meta models, the information we need to

know is only the classes names concerned by the containmnent relation newly
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created. So the tool will generate a file with this useful information. For
more details on instances transformation, please refer to the corresponding
chapter.

ATL Transformation for Merge Operator

The Merge operator produces as result meta model a meta model with the
content of left and right meta models and will merge all the elements of right
meta model that are already in left meta model.

The ATL transformation for that simply copy elements from left and
right meta models and merges classes that are already in left meta model.
All the merged classes are added to a list. As endpoint rules we browse this
list of merged classes in order to add to the resulting class the eAttributes,
eReferences or eTypes that should be added from the right meta model class
to the left meta model class.

You can take a look to the Merge Operator Template in Appendix A.
For a generic template, nothing is needed.
For transformation of instance of meta models, the information we need to

know is only the classes names concerned by the containmnent relation newly
created. So the tool will generate a file with this useful information. For
more details on instances transformation, please refer to the corresponding
chapter.

5.4.4 Implementation Details

The tool for meta model composition has been implemented with Java lan-
guage. It’s class diagram can be seen on Fig. 5.23

The MMComposition class has a switch case type of selection and will
create an instance of the corresponding composition operator. The Comp-
Operator abstract class is associated to an ATLCompiler and to an ATL-
Launcher in order to be able to compile the specific ATL file and to launch
the ASM resulting transformation file for producing the expected output.

There are problems with the execution of the generated ASM compiled
files. But if we take those ATL transformation and launch them into the
Eclipse ATL Plugin, they are working.
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Figure 5.23. UML Class Diagram for Meta Model Composition Tool



Chapter 6

Composition of instances of Meta
Model

In previous sections, we saw how we have implemented a tool for automatical
generation of ATL transformation of meta models. In this chapter, we are
going to present the conceptual approach and how we have implemented a
module in our Meta Model Composition Tool that composes the instances of
the meta models.

6.1 Global view

For computing the transformation of the instances of the input meta models
in order to get as output an instance of the composed meta model, we need
the following information as input:

• the left meta model path;

• the right meta model path;

• the operator;

• the left meta model instance path;

• the right meta model instance path;

• the composed meta model path;
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So we will have to give as input to the tool the composition definition
and the path to the resulting composed meta model.

With all that information, we will be able to process the following steps:

• 1 - Transform the left meta model instance to make them conform to
the composed meta model;

• 2 - Transform the right meta model instance to make them conform to
the composed meta model;

• 3 - Do the union of the two resulting composed meta model instances ;

• 4 - Apply the corresponding operator changes to the composed meta
model instances;

For doing the two first steps, we then need to create ATL transformation
specific to the corresponding meta models to which the models are conform-
ing. This means that we need to find a solution for generating automatically
a set of rules that will be used then to create an ATL model composition
transformation.

We also need to get some information on which class names or attributes
have been modified during the meta model composition (renaming of classes
for examples as explained in Chapter V).

6.2 Meta Model for Specific Transformation

Rules

In order to produce a file with the rules specific to the old and new meta
models, we defined a meta model that will allow to store ATL rules. This
meta model can be seen in Fig. 6.1.

The root is composed of Transformation Rules. In one hand we have all
the rules for the left meta model, and in the other hand we have all the rules
for the right meta model.

The ATL rules are stored as simple Strings. We are going to see how we
generate those rules in the next section.

This allow to generate instances of this meta model during the meta
model composition. The instance will be read during the model composition
phase.
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Figure 6.1. Transformation Rules Meta Model

6.3 Transformation Rules Generation

The generation of the transformation rules takes place during the meta model
composition process. It takes an ATL template that will take as input the
left and the right meta models and will produce as output an instance of the
Transformation Rules meta model. This instance will contain the rules for
left and right meta models. This file will be useful for the model composition
as previously explained.

As it can be seen in the corresponding code listings in Appendix A, we
need to specify the

• the package name from the left meta model (replace @@leftPackage-
Name@@ string in template);

• the package name from the right meta model (replace @@rightPacka-
geName@@ string in template);
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• the class name from the root of the left meta model (replace @@ left-
RootCName@@ string in template);

• the class name from the root of the right meta model (replace @@
rightRootCName@@ string in template);

Then, as it can be seen in Appendix, depending on the operator we will
generate the rules in different ways. For example, for Merge and Union
operators, we need to take in account the fact that some classes has been
renamed or merged.

Another important thing to be said, is that the root element of the meta
models should always be the first element.

6.4 Transformation of Instances to conform

them to the composed Meta Model

In this step, we have 2 operations:

• 1 - Transform the left meta model instance to make them conform to
the composed meta model;

• 2 - Transform the right meta model instance to make them conform to
the composed meta model;

For the first point, it is quiet easy to do this transformation with ATL as
it is a simple copy of elements as in the implementation of our composition
operators we never change the naming of the elements of the left meta model.

But, for the second point, it is a bit more complicated as the name of the
elements of the right meta model could have been renamed. For being able
to deal with that problem, we need to know what classes and/or attributes
have been changed during the composition transformation. The produced
file with this information is the instance of the Transformation Rules seen in
previous section.

6.5 Union of the Instances

Once we have adapted the two instances in order them to conform to the
new composed meta model, we need to do an union of them. This union is
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also done when generating the Transformation Rules as described in previous
chapter.

6.6 Apply the Operator changes in the Com-

posed Meta Model Instance

Now that we have our composed meta model instance, the last step is to
modify it depending on the used composition operator. This means that we
need to create if needed the relations between some elements of the instance
depending on the chosen meta model composition operator.

To do that, we are now faced to some questions. For example, if we have
created an association in the composed meta model between to classes, what
should we do with the elements instances of these classes in the composed
model? Should we keep them separated? Should we create a link between
them? What happen if we have cardinalities issues?

This problem has been solved taking the decision to give the user three
distinct possibilities.

• 1 - Keep it separated;

• 2 - Do a unique and random relation;

• 3 - Do random relations depending on cardinalities;

If any rule is not respected, the model will not validate in Eclipse.
For doing this, we have implemented for each operator a class in our

Meta Model Composition Tool that will manage the model composition for
its operator. Those classes, as done for meta model composition (presented in
previous Chapter), have a process() method. This method reads a template
for execution of model composition.

This template can be seen in Annex A. Basically, it has two variables
that we search for and replace:

• @@modelTransformationRules@@;

• @@operatorRules@@;

For the first one, we load and read the Transformation Rules instance
generated during the meta model composition and we just copy the rules in
the new ATL file for model composition execution.
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The second one, depends on the chosen operator and on the option (pre-
sented previously) taken. There is an if statement in each operator depending
class. The ATL rules are presented in following subsections.

6.6.1 Association

For association, we need to add an association between each instance of the
Suplier meta model class and of instance of the Client meta model class.
Here are the different rules for the option filling all random and filling one
random.

Listing 6.1. ATL rule for Association. Option filling all random.� �
. . .

2

f o r ( dta in ComposedMM! @@clientClassName@@ . a l l I n s t a n c e s ( ) ) {
4 f o r ( dtb in ComposedMM! @@suplierClassName@@ . a l l I n s t a n c e s ( ) ) {

dta . @@suplierClassNameInLowerCase@@<−dtb ;
6 }
}

8

. . .� �
Listing 6.2. ATL rule for Association. Option filling one random.� �

. . .
2

f o r ( dta in ComposedMM! @@clientClassName@@ . a l l I n s t a n c e s ( ) ) {
4 dta . @@suplierClassNameInLowerCase@@<−ComposedMM!

@@suplierClassName@@ . a l l I n s t a n c e s ( )−>se lectAny ( e | t rue ) ;
}

6

. . .� �
6.6.2 Containment

For containment, we need to add the containment relations between the
container and the contained instances.

Listing 6.3. Java code for ATL rule generation for Containment.� �
. . .

2
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switch ( f i l l i n gOp t i o n ) {
4 case 1 :

// a t l r u l e f o r random f i l l i n g
6 operatorRules=”\ t \ t f o r ( dta in ComposedMM! ”+

containerClassName+” . a l l I n s t a n c e s ( ) ) {\n” ;
I t e r a t o r c on t a i n edC l a s s e s I t e r a t o r = conta inedCla s s e s

. i t e r a t o r ( ) ;
8 while ( c on t a i n edC l a s s e s I t e r a t o r . hasNext ( ) ) {

ContainedClass currentConta inedClass = (
ContainedClass ) c on t a i n edC l a s s e s I t e r a t o r .
next ( ) ;

10 operatorRules+=”\ t \ t \ t f o r ( dtb in ComposedMM
! ”+currentConta inedClass . getClassName ( )+”
. a l l I n s t a n c e s ( ) ) {\n” +”\ t \ t \ t \ tdta . ”+
currentConta inedClass . getClassName ( ) .
toLowerCase ( )+”<−dtb ;\ t \ t \ t \ t \n” +”\ t \ t \ t
}\n” ;

}
12 operatorRules+=”\ t \ t }” ;

break ;
14 case 2 :

// a t l r u l e f o r unique random f i l l i n g
16 operatorRules=”\ t \ t f o r ( dta in ComposedMM! ”+

containerClassName+” . a l l I n s t a n c e s ( ) ) {\n” ;
I t e r a t o r c on t a i n edC l a s s e s I t e r a t o r 2 =

conta inedCla s s e s . i t e r a t o r ( ) ;
18 while ( c on t a i n edC l a s s e s I t e r a t o r 2 . hasNext ( ) ) {

ContainedClass currentConta inedClass = (
ContainedClass ) c on t a i n edC l a s s e s I t e r a t o r 2 . next
( ) ;

20 operatorRules+=”\ t \ t \ tdta . ”+currentConta inedClass
. getClassName ( ) . toLowerCase ( )+” <− ComposedMM!
”+currentConta inedClass . getClassName ( )+” .
a l l I n s t a n c e s ( )−>any ( e | t rue ) ;\n” ;

}
22 operatorRules+=”\ t \ t }” ;

break ;
24 default :

// a t l r u l e f o r not f i l l i n g
26 operatorRules=”” ;

break ;
28 }

30 . . .� �
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6.6.3 Inherit, Union and Merge

We do not need to apply any rule for those operators as the resulting models
are disjunct.



Chapter 7

Case study

This chapter presents all the steps to be taken in order to realize a composi-
tion of meta models and of their instances through an example. All the steps
are explained and illustrated with screenshots.

The example that will be taken into consideration in this case study is
the composition of the Assignment and Condition Domain Concepts meta
models (presented in Chapter IV). We are going to compose them with the
Inherit composition operator in order to get a new meta model in which a
possible instruction of the Condition statement can be an Assignment. This
means that the Instruction class of the Condition Domain Concept meta
model will be the specialized class. And the specialization class will be the
DCAssignment class from the Assignment Domain Concept meta model.

7.1 Introduction

The meta models we are going to compose are:

• the Assignment Domain Concept meta model (In Fig. 4.1, Chapter
IV);

• the Condition Domain Concept meta model (In Fig. 4.3, Chapter IV);

The operator chosen for the composition is the Inherit operator. It will
take:

• as specialized class: Instruction class from Condition Domain Concept
meta model;
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• as specialization class: DCAssignment class from Assignment Domain
Concept meta model;

We have also defined one instance per meta model. The definitions of
those meta models have been done using the EMF Eclipse framework. The
instances of the meta models have been done using the editors generated
automatically by the EMF Eclipse framework. More information on those
steps can be found on EMF Eclipse website.

7.2 Defining a composition

Now that we have defined the inputs and the operator, we launch the editor
generated automatically by the EMF Eclipse framework for our meta model
for meta model composition (described in Chapter V, see Fig. 5.1).

Figure 7.1. Definition of the composition

The Fig. 7.1 show the meta model instance we have created for the
example we have taken into consideration.

7.3 Execution of the Meta Model Composi-

tion

As described in Chapter V, the Meta Model Composition Tool I developed
take as input the composition definition file. You just need to execute the
tool, and you will get as result an ATL transformation file containing the
rules for getting the expected resulting meta model.
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You will have to take this produced file and run it in the ATL plugin in
the Eclipse framework as the interface for programmatical launch still doesn’t
work.

Then, in ATL you have to define the run configuration and you will get
the expected composed meta model. You can find the screenshot of the ATL
run configuration for executing the meta model composition in Fig. 7.2.

Figure 7.2. Screenshot of the ATL Run Configuration in Eclipse for running the
ATL meta model composition produced file.

The resutling meta model is in Fig. 7.3.
As it can be seen, we have in the left part the Condition Domain Concept

Meta Model and in the Right part the Assignment Domain Concept Meta
Model with a new inheritance relation that signifies that an Assignment can
be an instruction of a Condition. That was the expected result. The meta
model also validates in the Eclipse Framework, which is a good warranty for
it correctness.

We can then generate the editor automatically with the EMF Eclipse
Plugin in order to create new instances of the meta model. You can find in
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Figure 7.3. Meta Model resulting from the composition. Operator: Inherit. Source
meta models: Condition DC and Assignment DC.

Fig. 7.4 an example of an instance of our new composed meta model.

This model validates in the Eclipse Framework.
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Figure 7.4. Tree view of a new instance of the composed meta model.

7.4 Generation of Model Composition Rules

While executing the meta model composition, another ATL file is generated.
This ATL file contents all the rules needed for being able to generate a
composition of the instances of the meta models.

You can find in Fig. 7.5 a screenshot of the ATL run configuration for
this example.

7.5 Execution of Composition of Instances of

Meta Models

In order to compose the instances of the meta models of the meta model
composition, we just need to execute again the Meta Model Composition Tool
(described in Chapter V) giving as inputs the definition of the composition
and the composed meta model path.

The tool will then generate an ATL file with the model transformation
rules. This file can be seen in code listing following.

Listing 7.1. ATL automatically generated file for model composition execution.� �
module execute mode l t rans fo rmat ion ; −− Module Template

2 create newModel : ComposedMM from modelLeft : MMLeft , modelRight
: MMRight ;

4 −− INITIALIZATION
−− s imple copy o f the e lements o f l e f t and r i g h t models
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Figure 7.5. Screenshot of the ATL Run Configuration in Eclipse for running the
ATL model composition transformation rules produced file.

6 −− to the new model conforming to composed meta model

8 rule L ConditionDC { from pack : MMLeft ! ”ConditionDC” to
newlPack : ComposedMM! ”ConditionDC” ( ownedConditions <− pack .
ownedConditions−>c o l l e c t ( e | thisModule . L DCCondition ( e ) )
) }

lazy rule L DCCondition { from pack : MMLeft ! ”DCCondition” to
newlPack : ComposedMM! ”DCCondition” ( name <− pack . name ,
po s i t i v eCond i t i o n I n s t r u c t i on <− pack .
po s i t i v eCond i t i on In s t ru c t i on , n ega t i v eCond i t i on In s t ruc t i on
<− pack . nega t i veCond i t i on In s t ruc t i on , cond i t i onExpre s s i on
<− pack . cond i t i onExpre s s i on ) }

10 rule L In s t ru c t i on { from pack : MMLeft ! ” I n s t r u c t i o n ” to
newlPack : ComposedMM! ” In s t r u c t i o n ” ( i n s t r u c t i o n <− pack .
i n s t r u c t i o n ) }

rule L BooleanExpress ion { from pack : MMLeft ! ”
BooleanExpress ion ” to newlPack : ComposedMM! ”
BooleanExpress ion ” ( exp r e s s i on <− pack . exp r e s s i on ) }
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12 rule R AssignmentDC { from pack : MMRight ! ”AssignmentDC” to
newrPack : ComposedMM! ”AssignmentDC” ( ownedAssignments <−
pack . ownedAssignments−>c o l l e c t ( e | thisModule . R DCAssignment
( e ) ) ) }

lazy rule R DCAssignment { from pack : MMRight ! ”DCAssignment”
to newrPack : ComposedMM! ”DCAssignment” ( name <− pack . name ,
v a r i ab l e <− pack . va r i ab l e , va lue <− pack . value , type <−
pack . type ) }

14 rule R Variable { from pack : MMRight ! ” Var iab le ” to newrPack :
ComposedMM! ” Var iab le ” ( name <− pack . name , va r i ab l eVa lue s <−

pack . va r i ab l eVa lue s ) }
rule R Value { from pack : MMRight ! ”Value” to newrPack :

ComposedMM! ”Value” ( va lue <− pack . value , valueType <− pack .
valueType ) }

16 rule R Type { from pack : MMRight ! ”Type” to newrPack :
ComposedMM! ”Type” ( typeName <− pack . typeName ) }

18

−− EXECUTION OF DELAYED ACTIONS
20 −− r u l e s depending on the opera tor

22 −− r u l e s f o r a s s o c i a t i on
endpoint rule EndRule ( ) {

24 do {
−− r u l e f o r opera tor I n h e r i t

26 −− No Rule Needed
}

28 }� �
You can find in Fig. 7.6 a screenshot of the ATL run configuration for

this example.
The resulting composed model can be seen in Fig. 7.7.
This model validates in the Eclipse Framework.

7.6 Meta model checking and verification

As described on Chapter IV, we can transform a meta model into a COOPN
specification. An idea for further work would be to analyze how we can
compose the defined transformation of Domain Concepts into COOPN, in
order to get the COOPN specification of the resulting meta model. This will
allow to do some meta model checking and verifications.
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Figure 7.6. Screenshot of the ATL Run Configuration in Eclipse for running the
ATL model composition produced file.
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Figure 7.7. Tree view of resulting composed model.



Chapter 8

Conclusion

In this Master work, we have

• studied the meta model composition and its operator;

• implemented the meta model composition operators with ATL trans-
formation language;

• studied and implemented the problematic of the composition of in-
stances of meta models;

• seen how we can define domain concepts meta models which are bricks
of programation languages;

• developped tools for generic meta models and instances composition;

• how we can transform those meta model in their equivalent in COOPN
language for testing and verification aims;

• how we can trasnform instances of the COOPN language meta model
into COOPN Specifications;

This Master work have been the fruit of a long work. I appreciate that
through this Master I have increased my knowledges about meta models,
about COOPN language, and specially about meta model and model trans-
formation with the ATL language.

We saw with the case study, that in theory very intersting things can
be done with meta model composition. But one thing I can see is that for
the moment the ATL programmatically launch is still a problem as I did
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not managed to have it work. This was not very good for developing the
composition tools, as I should always take generated ATL files to launch
them into the Eclipse ATL Plugin.

Another thing that appears, is the fact that for instances of meta model
composition, a lot of interesting questions appears depending on the opera-
tors. More work should be done on this subject.

Finally, all the verification and test side of meta models with COOPN
language and the composition of their transformation is still a main research
field that should be studied.

The conclusion of this Master work is that work has been done on the meta
model composition, but this opens now a lot of new subjects and questions
that should be explored in further works.



Appendix A

Implementation

This chapter makes a presentation of the main implementation aspects.

A.1 XMI to COOPN Transformation

Listing A.1. Recursive method for processing the equations for COOPN condition,
axioms and theorems.� �
private stat ic void processEquat ion ( Equation theEquation ) {

2 // Get t ing l e f t and r i g h t terms o f the equat ion
Term leftTerm = theEquation . getOwnedOperatorEquation ( ) .

getLeftTerm ( ) ;
4 Term rightTerm = theEquation . getOwnedOperatorEquation ( ) .

getRightTerm ( ) ;
// For each term of the equat ion

6 for ( Object aTerm : theEquation . getOwnedEquationTerms ( ) ) {
Term term = (Term)aTerm ;

8 // i f the term i s not an equat ion , t h a t means t ha t we
are on the recur s ion termina l case

i f ( ! ( aTerm instanceof Equation ) ) {
10 // wr i t i n g the current term

equat ionExpress ion += ” ” + term . getExpres s ion ( ) +
” ” ;

12 // and i f t h e r e i s a r i g h t term we wr i t e the
opera tor

i f (aTerm == leftTerm ) {
14 equat ionExpress ion+= theEquation .

getOwnedOperatorEquation ( ) . getOperator ( ) + ”
” ;
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}
16 }

// i f the term i s an equat ion , we w i l l have to do a
recurs ion s t ep

18 i f (aTerm instanceof Equation ) {
Equation equat ion = ( Equation )aTerm ;

20 i f ( ! ( equat ion . getOwnedOperatorEquation ( ) .
getLeftTerm ( ) instanceof Equation ) ) {
// i f l e f t term not an equat ion , we can wr i t e

i t
22 equat ionExpress ion += ” ( ” + equat ion .

getOwnedOperatorEquation ( ) . getLeftTerm ( ) .
ge tExpres s ion ( ) ;

}
24 else {

// i f l e f t term an equat ion , we can proceed to
recurs ion

26 processEquat ion ( equat ion ) ;
}

28 // adding the opera tor
equat ionExpress ion += ” ” + equat ion .

getOwnedOperatorEquation ( ) . getOperator ( ) + ” ” ;
30 i f ( ! ( equat ion . getOwnedOperatorEquation ( ) .

getRightTerm ( ) instanceof Equation ) ) {
// i f r i g h t term not an equat ion , we can wr i t e

i t
32 equat ionExpress ion += equat ion .

getOwnedOperatorEquation ( ) . getRightTerm ( ) .
ge tExpres s ion ( ) + ” ) ” ;

// adding opera tor
34 i f (aTerm == leftTerm ) {

equat ionExpress ion+= ” ” + theEquation .
getOwnedOperatorEquation ( ) . getOperator ( )
+ ” ” ;

36 }
}

38 else {
// i f r i g h t term i s an equat ion , we can proceed

to recur s ion
40 processEquat ion ( equat ion ) ;

}
42 }

}� �
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A.2 ATL Operator Templates

You can find here the code listings for the ATL Templates for each meta
model composition operator.

A.2.1 Template for Union Operator

Listing A.2. ATL Template Transformation for Union operator� �
−− @at lcompi l er a t l 2006

2 module union execute metamode l t rans format ion ; −− Module
Template

create metamodelcomposed : MOF from modelLeft : MOFLeft ,
modelRight : MOFRight ;

4

−− HELPING METHODS
6

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

8 helper context MOFLeft ! EPackage def : getAl lClassesNames ( ) :
OrderedSet (String ) =

s e l f . e C l a s s i f i e r s −>i t e r a t e ( c ; e lements : OrderedSet (String )
=

10 OrderedSet{} | e lements . append ( c . name)
)

12 ;

14 −− d e f i n i t i o n o f a c o l l e c t i o n o f EReferences which w i l l be used
−− f o r modi fy ing eReferences t ype s at the end

16 helper def : referencesFromResultMM : OrderedSet (MOF! EReference )
=

OrderedSet {} ;
18

−− d e f i n i t i o n o f a c o l l e c t i o n o f eReferences names from l e f t
metamodel

20 helper def : referencesNamesFromLMM : OrderedSet (String ) =
OrderedSet {} ;

22

−− d e f i n i t i o n o f a c o l l e c t i o n with names o f the c l a s s e s from the
r i g h t meta model

24 helper def : classesFromRMM : OrderedSet (String ) =
OrderedSet {} ;

26

−− d e f i n i t i o n o f a c o l l e c t i o n o f EAt t r i bu t e s which w i l l be used
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28 helper def : attributesFromResultMM : OrderedSet (MOF! EAttr ibutes )
=

OrderedSet {} ;
30

−− d e f i n i t i o n o f a c o l l e c t i o n o f ESuperTypes which w i l l be used
32 helper def : c lassesThatHaveSuperTypes : OrderedSet (MOFRigth !

EClass ) =
OrderedSet {} ;

34

−− INITIALIZATION
36

rule i n i t {
38 from

lPack : MOFLeft ! ” ecore : : EPackage” ,
40 rPack : MOFRight ! ” ecore : : EPackage”

to
42 compPack : MOF! ” ecore : : EPackage” (

−− s e t t i n g name o f the new epackage
44 name <− lPack . name + ’ un ion ’ + rPack . name ,

−− s e t t i n g the e c l a s s i f i e s from l e f t and r i g h t meta model
46 e C l a s s i f i e r s <− lPack . e C l a s s i f i e r s ,

−− as the eC las se s from the r i g h t meta model need to be
renamed

48 −− in case t he r e i s a l r eady a c l a s s wi th same name in the
l e f t package

−− we need to use a l a z y ru l e because we need to use the
l e f t epackage to check

50 −− i f a r i g h t mm c l a s s name i s a l r eady used in the l e f t mm
e C l a s s i f i e r s <− rPack . e C l a s s i f i e r s −>c o l l e c t ( e | thisModule

. CLASSRight ( e , lPack , compPack , rPack ) )
52 )

}
54

−− MANAGING ECLASSES
56

rule CLASSLeft {
58 from

l : MOFLeft ! ” ecore : : EClass ”
60 to

comp : MOF! ” ecore : : EClass ” (
62 −− f o r l e f t eC la s se s we j u s t need to put them as they are

in the r e s u l t mm
name <− l . name ,

64 eSuperTypes <− l . eSuperTypes ,
eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s



102 Appendix A. Implementation

66 )
}

68

lazy rule CLASSRight{
70 from

r : MOFRight ! ” ecore : : EClass ” ,
72 l : MOFLeft ! ” ecore : : EPackage” ,

c : MOF! ” ecore : : EPackage” ,
74 rPack : MOFRight ! ” ecore : : EPackage”

to
76 comp : MOF! ” ecore : : EClass ” (

−− we need l a z y r u l e s f o r a t t r i b u t e s and r e f e r enc e s as
we need to rename them

78 eS t ruc tu ra lFea tu r e s <− r . eAtt r ibutes ,
eS t ruc tu ra lFea tu r e s <− r . eReferences−>c o l l e c t ( e |

thisModule . REFRight ( e , l , c , rPack ) ) ,
80 −− renaming the c l a s s name i f the name i s a l r eady used

in l e f t mm
name <− i f l . getAl lClassesNames ( ) . exc ludes ( r . name)

82 then
r . name

84 else
r . name + ’ RMM’

86 endif
)

88 do {
−− f e e l i n g the c o l l e c t i o n o f eC las se s o f the r e s u l t i n g mm

90 thisModule . classesFromRMM2List (comp) ;
i f ( r . eSuperTypes . s i z e ( ) >0) {

92 thisModule . c lassesThatHaveSuperTypes2List ( r ) ;
}

94 }
}

96

−− MANAGING EATTRIBUTES
98

rule ATRLeft {
100 from

l : MOFLeft ! ” ecore : : EAttr ibute ”
102 to

comp : MOF! ” ecore : : EAttr ibute ” (
104 −− e a t t r i b u t e s from l e f t mm j u s t need to be put in the

r e s u l t mm
name <− l . name ,

106 eType <− l . eType



A.2. ATL Operator Templates 103

)
108 }

110 rule ATRRight {
from

112 r : MOFRight ! ” ecore : : EAttr ibute ”
to

114 comp : MOF! ” ecore : : EAttr ibute ” (
−− r i g h t a t t r i b u t e s need to be renamed and the type

r e f e r ence to be changed
116 −− i f p o in t i n g to a c l a s s t ha t has been renamed

name <− r . name ,
118 eType <− r . eType

)
120 do {

−− f e e l i n g the c o l l e c t i o n o f e r e f e r enc e s
122 thisModule . Att r ibute sToLi s t (comp) ;

}
124 }

126 −− MANAGING EREFRENCES

128 rule REFLeft {
from

130 l : MOFLeft ! ” ecore : : EReference ”
to

132 comp : MOF! ” ecore : : EReference ” (
−− l e f t mm eReferences j u s t need to be cop ied in the

r e s u l t mm
134 name <− l . name ,

upperBound <− l . upperBound ,
136 eType <− l . eType ,

containment <− l . containment
138 )

do {
140 −− f e e l i n g the c o l l e c t i o n o f ereferencesNames f o r renaming

o f e r e f names
thisModule . ReferencesNamesToList (comp) ;

142 }
}

144

lazy rule REFRight {
146 from

r : MOFRight ! ” ecore : : EReference ” ,
148 l : MOFLeft ! ” ecore : : EPackage” ,



104 Appendix A. Implementation

c : MOF! ” ecore : : EPackage” ,
150 rPack : MOFRight ! ” ecore : : EPackage”

to
152 comp : MOF! ” ecore : : EReference ” (

−− r i g h t mm eReferences need to be changed i f po in t i n g to
a c l a s s t ha t has been renamed

154 −− but now we j u s t copy them , as the mod i f i c a t i on s can
only be done at the end

name <− r . name ,
156 lowerBound <− r . lowerBound ,

upperBound <− r . upperBound ,
158 eType <− r . eReferenceType ,

containment <− r . containment
160 )

do {
162 −− f e e l i n g the c o l l e c t i o n o f e r e f e r enc e s

thisModule . Re fe rencesToLis t (comp) ;
164 }

}
166

−− FEELING COLLECTION RULES
168

rule ReferencesToLis t ( e : MOF! EReference ) {
170 do {

thisModule . referencesFromResultMM <− thisModule .
referencesFromResultMM−>append ( e ) ;

172 }
}

174

rule ReferencesNamesToList ( e : MOF! EReference ) {
176 do {

thisModule . referencesNamesFromLMM <− thisModule .
referencesNamesFromLMM−>append ( e . name) ;

178 }
}

180

rule classesFromRMM2List ( e : MOFRigth ! EClass ) {
182 do {

thisModule . classesFromRMM <− thisModule . classesFromRMM−>
append ( e . name) ;

184 }
}

186

rule Attr ibute sToLi s t ( e : MOF! EAttr ibutes ) {
188 do {
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thisModule . attributesFromResultMM <− thisModule .
attributesFromResultMM−>append ( e ) ;

190 }
}

192

rule c lassesThatHaveSuperTypes2List ( e : MOFRigth ! EClass ) {
194 do {

thisModule . classesThatHaveSuperTypes <− thisModule .
classesThatHaveSuperTypes−>append ( e ) ;

196 }
}

198

−− EXECUTION OF DELAYED ACTIONS
200

endpoint rule EndRule ( ) {
202 do {

−− f o r the i nh e r i t an c e s r e l a t i o n adap ta t ion
204 f o r ( dta in thisModule . classesThatHaveSuperTypes ) {

f o r ( dtb in dta . eSuperTypes ) {
206 MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = dta . name or

e . name = ( dta . name + ’ RMM’ ) ) . eSuperTypes <−
i f ( thisModule . classesFromRMM . in c l ude s ( dtb . name) )

208 then
(

210 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = dtb .
name) )

)
212 else

(
214 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = ( dtb .

name + ’ RMM’ ) ) )
)

216 endif ;
}

218 }
−− renaming and modi fy ing eA t t r i b u t e s

220 f o r ( dta in thisModule . attributesFromResultMM ) {
dta . eType <− i f ( thisModule . classesFromRMM . in c l ude s ( dta .

eType . name) )
222 then

(
224 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = dta .

eType . name) )
)

226 else
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(
228 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = ( dta .

eType . name + ’ RMM’ ) ) )
)

230 endif ;
}

232 −− renaming and modi fy ing eReferences
f o r ( dta in thisModule . referencesFromResultMM ) {

234 −− we can now rename the eReference name
dta . name <− i f ( thisModule . referencesNamesFromLMM . in c l ude s (

dta . name) )
236 then

( dta . name+’ RMM’ )
238 else

( dta . name)
240 endif ;

−− and modify the b ind ing to the good EClass
242 dta . eType <− i f ( thisModule . classesFromRMM . in c l ude s ( dta .

eReferenceType . name) )
then

244 (
(MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name =

dta . eReferenceType . name) )
246 )

else
248 (

(MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = (
dta . eReferenceType . name + ’ RMM’ ) ) )

250 )
endif ;

252 }
}

254 }� �
A.2.2 Template for Merge Operator

Listing A.3. ATL Template Transformation for Merge operator� �
−− @at lcompi l er a t l 2006

2 module merge execute metamode l t rans format ion ; −− Module
Template

create metamodelcomposed : MOF from modelLeft : MOFLeft ,
modelRight : MOFRight ;

4
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−− HELPING METHODS
6

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

8 helper context MOFLeft ! EPackage def : getAl lClassesNames ( ) :
OrderedSet (String ) =

s e l f . e C l a s s i f i e r s −>i t e r a t e ( c ; e lements : OrderedSet (String )
=

10 OrderedSet{} | e lements . append ( c . name)
)

12 ;

14 −− d e f i n i t i o n o f a c o l l e c t i o n o f EReferences which w i l l be used
−− f o r modi fy ing eReferences t ype s at the end

16 helper def : referencesFromResultMM : OrderedSet (MOF! EReference )
=

OrderedSet {} ;
18

−− h e l p e r s in order to be a b l e to acces s d i r e c t l y the l e f t and
r i g h t EPackages

20 helper def : thePackageFromRightMM : MOFRight ! EPackage = MOFRight
! EPackage ;

helper def : thePackageFromLeftMM : MOFLeft ! EPackage = MOFLeft !
EPackage ;

22

−− d e f i n i t i o n o f a c o l l e c t i o n o f eReferences names from l e f t
metamodel

24 helper def : referencesNamesFromLMM : OrderedSet (String ) =
OrderedSet {} ;

26

−− d e f i n i t i o n o f a c o l l e c t i o n with names o f the c l a s s e s from the
r i g h t meta model

28 helper def : classesFromRMM : OrderedSet (String ) =
OrderedSet {} ;

30

−− d e f i n i t i o n o f a c o l l e c t i o n o f EAt t r i bu t e s which w i l l be used
32 helper def : attributesFromResultMM : OrderedSet (MOF! EAttr ibutes )

=
OrderedSet {} ;

34

−− d e f i n i t i o n o f a c o l l e c t i o n o f ESuperTypes which w i l l be used
36 helper def : c lassesThatHaveSuperTypes : OrderedSet (MOFRigth !

EClass ) =
OrderedSet {} ;

38
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−− INITIALIZATION
40

rule i n i t {
42 from

lPack : MOFLeft ! ” ecore : : EPackage” ,
44 rPack : MOFRight ! ” ecore : : EPackage”

to
46 compPack : MOF! ” ecore : : EPackage” (

−− s e t t i n g name o f the new epackage
48 name <− lPack . name + ’ merge ’ + rPack . name ,

−− s e t t i n g the e c l a s s i f i e s from l e f t and r i g h t meta model
50 e C l a s s i f i e r s <− lPack . e C l a s s i f i e r s ,

−− as the eC las se s from the r i g h t meta model need to be
renamed

52 −− in case t he r e i s a l r eady a c l a s s wi th same name in the
l e f t package

−− we need to use a l a z y ru l e because we need to use the
l e f t epackage to check

54 −− i f a r i g h t mm c l a s s name i s a l r eady used in the l e f t mm
e C l a s s i f i e r s <− ( rPack . e C l a s s i f i e r s −>s e l e c t ( e | lPack .

getAl lClassesNames ( ) . exc ludes ( e . name) ) )−>c o l l e c t ( e |
thisModule . CLASSRight ( e , lPack , compPack , rPack )

56 )
do{

58 thisModule . thePackageFromRightMM<−rPack ;
thisModule . thePackageFromLeftMM<−lPack ;

60 }
}

62

−− MANAGING ECLASSES
64

rule CLASSLeft {
66 from

l : MOFLeft ! ” ecore : : EClass ”
68 to

comp : MOF! ” ecore : : EClass ” (
70 eSuperTypes <− l . eSuperTypes ,

−− f o r l e f t eC la s se s we j u s t need to put them as they are
in the r e s u l t mm

72 name <− l . name ,
eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s

74 )
do {

76 −− f e e l i n g the c o l l e c t i o n o f eC las se s o f the r e s u l t i n g mm
thisModule . classesFromRMM2List (comp) ;



A.2. ATL Operator Templates 109

78 }
}

80

lazy rule CLASSRight{
82 from

r : MOFRight ! ” ecore : : EClass ” ,
84 l : MOFLeft ! ” ecore : : EPackage” ,

c : MOF! ” ecore : : EPackage” ,
86 rPack : MOFRight ! ” ecore : : EPackage”

to
88 comp : MOF! ” ecore : : EClass ” (

−− we need l a z y r u l e s f o r a t t r i b u t e s and r e f e r enc e s as
we need to rename them

90 eS t ruc tu ra lFea tu r e s <− r . eAtt r ibutes−>c o l l e c t ( e |
thisModule . ATRRight( e ) ) ,

eS t ruc tu ra lFea tu r e s <− r . eReferences−>c o l l e c t ( e |
thisModule . REFRight ( e , l , c , rPack ) ) ,

92 −− renaming the c l a s s name i f the name i s a l r eady used
in l e f t mm

name <− i f l . getAl lClassesNames ( ) . exc ludes ( r . name)
94 then

r . name
96 else

r . name + ’ RMM’
98 endif

)
100 do {

−− f e e l i n g the c o l l e c t i o n o f eC las se s o f the r e s u l t i n g mm
102 thisModule . classesFromRMM2List (comp) ;

i f ( r . eSuperTypes . s i z e ( ) >0) {
104 thisModule . c lassesThatHaveSuperTypes2List ( r ) ;

}
106 }

}
108

−− MANAGING EATTRIBUTES
110

rule ATRLeft {
112 from

l : MOFLeft ! ” ecore : : EAttr ibute ”
114 to

comp : MOF! ” ecore : : EAttr ibute ” (
116 −− e a t t r i b u t e s from l e f t mm j u s t need to be put in the

r e s u l t mm
name <− l . name ,
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118 eType <− l . eType
)

120 }

122 lazy rule ATRRight {
from

124 r : MOFRight ! ” ecore : : EAttr ibute ”
to

126 comp : MOF! ” ecore : : EAttr ibute ” (
−− r i g h t a t t r i b u t e s need to be renamed and the type

r e f e r ence to be changed
128 −− i f p o in t i n g to a c l a s s t ha t has been renamed

name <− r . name ,
130 eType <− r . eType

)
132 do {

−− f e e l i n g the c o l l e c t i o n o f e r e f e r enc e s
134 thisModule . Att r ibute sToLi s t (comp) ;

}
136 }

138 −− MANAGING EREFRENCES

140 rule REFLeft {
from

142 l : MOFLeft ! ” ecore : : EReference ”
to

144 comp : MOF! ” ecore : : EReference ” (
−− l e f t mm eReferences j u s t need to be cop ied in the

r e s u l t mm
146 name <− l . name ,

upperBound <− l . upperBound ,
148 eType <− l . eType ,

containment <− l . containment
150 )

do {
152 −− f e e l i n g the c o l l e c t i o n o f ereferencesNames f o r renaming

o f e r e f names
thisModule . ReferencesNamesToList (comp) ;

154 }
}

156

lazy rule REFRight {
158 from

r : MOFRight ! ” ecore : : EReference ” ,
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160 l : MOFLeft ! ” ecore : : EPackage” ,
c : MOF! ” ecore : : EPackage” ,

162 rPack : MOFRight ! ” ecore : : EPackage”
to

164 comp : MOF! ” ecore : : EReference ” (
−− r i g h t mm eReferences need to be changed i f po in t i n g to

a c l a s s t ha t has been renamed
166 −− but now we j u s t copy them , as the mod i f i c a t i on s can

only be done at the end
name <− r . name ,

168 lowerBound <− r . lowerBound ,
upperBound <− r . upperBound ,

170 eType <− r . eReferenceType ,
containment <− r . containment

172 )
do {

174 −− f e e l i n g the c o l l e c t i o n o f e r e f e r enc e s
thisModule . Re fe rencesToLis t (comp) ;

176 }
}

178

−− FEELING COLLECTION RULES
180

rule ReferencesToLis t ( e : MOF! EReference ) {
182 do {

thisModule . referencesFromResultMM <− thisModule .
referencesFromResultMM−>append ( e ) ;

184 }
}

186

rule ReferencesNamesToList ( e : MOF! EReference ) {
188 do {

thisModule . referencesNamesFromLMM <− thisModule .
referencesNamesFromLMM−>append ( e . name) ;

190 }
}

192

rule classesFromRMM2List ( e : MOFRigth ! EClass ) {
194 do {

thisModule . classesFromRMM <− thisModule . classesFromRMM−>
append ( e . name) ;

196 }
}

198

rule Attr ibute sToLi s t ( e : MOF! EAttr ibutes ) {
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200 do {
thisModule . attributesFromResultMM <− thisModule .

attributesFromResultMM−>append ( e ) ;
202 }

}
204

rule c lassesThatHaveSuperTypes2List ( e : MOFRigth ! EClass ) {
206 do {

thisModule . classesThatHaveSuperTypes <− thisModule .
classesThatHaveSuperTypes−>append ( e ) ;

208 }
}

210

−− EXECUTION OF DELAYED ACTIONS
212

helper def : l i s tOfMergedClas s e s2 : OrderedSet (MOFRight ! EClass ) =
OrderedSet {} ;

214 helper def : l i s tO fMergedC la s s e sAt t r ibu t e s : OrderedSet (MOFRight !
EAttr ibute ) = OrderedSet {} ;

216 endpoint rule EndRule ( ) {
do {

218

−− r u l e f o r g e t t i n g the merged c l a s s e s in order to be a b l e
to add eA t t r i b u t e s

220 thisModule . l i s tOfMergedClas s e s2 <− thisModule .
l i s tOfMergedClas s e s2 . union (

( thisModule . thePackageFromRightMM . e C l a s s i f i e r s −>s e l e c t ( e |
thisModule . thePackageFromLeftMM . getAl lClassesNames ( ) .
i n c l ud e s ( e . name) )−> i t e r a t e ( c ; e lements : OrderedSet (
MOFRight ! EClass ) =

222 OrderedSet{} | e lements . append ( c ) ) ) ) ;

224 −− now we can i t e r a t e on each merged c l a s s from the r i g h t
meta model

f o r ( dta in thisModule . l i s tOfMergedClas s e s2 ) {
226 −− we use t h i s r u l e f o r g e t t i n g a l i s t wi th a l l t he

a t t r i b u t e s o f the merged c l a s s
−− t h a t we shou ld add to the c l a s s in the r e s u l t i n g meta

model
228 thisModule . l i s tO fMergedC la s s e sAt t r ibu t e s <− thisModule .

l i s tO fMergedC la s s e sAt t r i bu t e s . union (
( dta . eAttr ibutes−>s e l e c t ( e | (MOF! EClass . a l l I n s t a n c e s ( )

−>any ( e | e . name = dta . name) ) . eAtt r ibutes−>c o l l e c t ( e
| e . name) . exc ludes ( e . name) )−> i t e r a t e ( c ; e lements :
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OrderedSet (MOFRight ! EAttr ibute ) =
230 OrderedSet{} | e lements . append ( c ) ) ) ) ;

−− then we need to i t e r a t e on those a t t r i b u t e s
232 f o r ( dtb in thisModule . l i s tO fMergedC la s s e sAt t r ibu t e s ) {

−− and add them to the eS t ruc tu ra lFea tu r e s l i s t o f the
corresponding r e s u l t i n g c l a s s

234 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = dta . name) ) .
eSt ruc tura lFeature s <−dtb ;

}
236 }

238 −− renaming and modi fy ing eA t t r i b u t e s
f o r ( dta in thisModule . attributesFromResultMM ) {

240 dta . eType <− i f ( thisModule . classesFromRMM . in c l ude s ( dta .
eType . name) )

then
242 (

(MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = dta .
eType . name) )

244 )
else

246 (
(MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = ( dta .

eType . name + ’ RMM’ ) ) )
248 )

endif ;
250 }

−− f o r the i nh e r i t an c e s r e l a t i o n adap ta t ion
252 f o r ( dta in thisModule . classesThatHaveSuperTypes ) {

f o r ( dtb in dta . eSuperTypes ) {
254 MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = dta . name or

e . name = ( dta . name + ’ RMM’ ) ) . eSuperTypes <−
i f ( thisModule . classesFromRMM . in c l ude s ( dtb . name) )

256 then
(

258 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = dtb .
name) )

)
260 else

(
262 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = ( dtb .

name + ’ RMM’ ) ) )
)

264 endif ;
}
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266 }
−− renaming and modi fy ing eReferences

268 f o r ( dta in thisModule . referencesFromResultMM ) {
−− we can now rename the eReference name

270 dta . name <− i f ( thisModule . referencesNamesFromLMM . in c l ude s (
dta . name) )

then
272 ( dta . name+’ RMM’ )

else
274 ( dta . name)

endif ;
276 −− and modify the b ind ing to the good EClass

dta . eType <− i f ( thisModule . classesFromRMM . in c l ude s ( dta .
eReferenceType . name) )

278 then
(

280 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name =
dta . eReferenceType . name) )

)
282 else

(
284 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = (

dta . eReferenceType . name + ’ RMM’ ) ) )
)

286 endif ;
}

288 }
}� �
A.2.3 Template for Association Operator

Listing A.4. ATL Template Transformation for Association operator� �
−− @at lcompi l er a t l 2006

2 module a s soc i a t i on execu t e metamode l t r ans f o rmat i on ; −− Module
Template

create metamodelcomposed : MOF from modelLeft : MOFLeft ,
modelRight : MOFRight ;

4

−− HELPING METHODS
6

helper def : re ferencesForConta inment : OrderedSet (MOF! EReference
) =

8 OrderedSet {} ;
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10 −− INITIALIZATION

12 rule i n i t {
from

14 lPack : MOFLeft ! ” ecore : : EPackage” ,
rPack : MOFRight ! ” ecore : : EPackage”

16 to
compPack : MOF! ” ecore : : EPackage” (

18 −− s e t t i n g name o f the new epackage
name <− lPack . name + ’ a s s o c i a t i o n ’ + rPack . name ,

20 −− s e t t i n g the e c l a s s i f i e s from l e f t and r i g h t meta model
e C l a s s i f i e r s <− lPack . e C l a s s i f i e r s ,

22 e C l a s s i f i e r s <− rPack . e C l a s s i f i e r s
)

24 }

26 −− MANAGING ECLASSES

28 rule CLASSLeft {
from

30 l : MOFLeft ! ” ecore : : EClass ”
to

32 comp : MOF! ” ecore : : EClass ” (
−− f o r l e f t eC la s se s we j u s t need to put them as they are

in the r e s u l t mm
34 name <− l . name ,

eSuperTypes <− l . eSuperTypes ,
36 eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s

)
38 }

40 rule CLASSRight1 {
from

42 l : MOFRight ! ” ecore : : EClass ” ( l . name=’@@suplierCName@@ ’ )
to

44 comp : MOF! ” ecore : : EClass ” (
−− f o r l e f t eC la s se s we j u s t need to put them as they are

in the r e s u l t mm
46 name <− l . name ,

eSuperTypes <− l . eSuperTypes ,
48 eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s

) ,
50 comp2 : MOF! ” ecore : : EReference ” (
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−− l e f t mm eReferences j u s t need to be copied in the
r e s u l t mm

52 name <− l . name . toLower ( ) ,
containment <− f a l s e ,

54 lowerBound <− @@suplierLBound@@ ,
upperBound <− @@suplierUBound@@ ,

56 eType <− comp
)

58 do {
thisModule . ReferencesForContainmentToList ( comp2) ;

60 }
}

62

rule CLASSRight2 {
64 from

l : MOFRight ! ” ecore : : EClass ” ( l . name<> ’@@suplierCName@@ ’ )
66 to

comp : MOF! ” ecore : : EClass ” (
68 −− f o r l e f t eC la s se s we j u s t need to put them as they are

in the r e s u l t mm
name <− l . name ,

70 eSuperTypes <− l . eSuperTypes ,
eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s

72 )
}

74

−− MANAGING EATTRIBUTES
76

rule ATRLeft {
78 from

l : MOFLeft ! ” ecore : : EAttr ibute ”
80 to

comp : MOF! ” ecore : : EAttr ibute ” (
82 −− e a t t r i b u t e s from l e f t mm j u s t need to be put in the

r e s u l t mm
name <− l . name ,

84 eType <− l . eType
)

86 }

88 rule ATRRight {
from

90 l : MOFRight ! ” ecore : : EAttr ibute ”
to

92 comp : MOF! ” ecore : : EAttr ibute ” (
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−− e a t t r i b u t e s from l e f t mm j u s t need to be put in the
r e s u l t mm

94 name <− l . name ,
eType <− l . eType

96 )
}

98

−− MANAGING EREFRENCES
100

rule REFLeft {
102 from

l : MOFLeft ! ” ecore : : EReference ”
104 to

comp : MOF! ” ecore : : EReference ” (
106 −− l e f t mm eReferences j u s t need to be cop ied in the

r e s u l t mm
name <− l . name ,

108 upperBound <− l . upperBound ,
eType <− l . eType ,

110 containment <− l . containment
)

112 }

114 rule REFRight {
from

116 l : MOFRight ! ” ecore : : EReference ”
to

118 comp : MOF! ” ecore : : EReference ” (
−− l e f t mm eReferences j u s t need to be cop ied in the

r e s u l t mm
120 name <− l . name ,

upperBound <− l . upperBound ,
122 eType <− l . eType ,

containment <− l . containment
124 )

}
126

−− FEELING COLLECTION RULES
128

rule ReferencesForContainmentToList ( e : MOF! EReference ) {
130 do {

thisModule . re ferencesForConta inment <− thisModule .
re ferencesForContainment−>append ( e ) ;

132 }
}
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134

−− EXECUTION OF DELAYED ACTIONS
136

endpoint rule EndRule ( ) {
138 do {

f o r ( dta in thisModule . re ferencesForConta inment ) {
140 dta . containment <− f a l s e ;

(MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = ’
@@clientCName@@ ’ ) ) . eS t ruc tu ra lFea tu r e s <− dta ;

142 }
}

144 }� �
A.2.4 Template for Aggregation Operator

Listing A.5. ATL Template Transformation for Aggregation operator� �
−− @at lcompi l er a t l 2006

2 module conta inment execute metamode l t rans format ion ; −− Module
Template

create metamodelcomposed : MOF from modelLeft : MOFLeft ,
modelRight : MOFRight ;

4

−− HELPING METHODS
6

helper def : re ferencesForConta inment : OrderedSet (MOF! EReference
) =

8 OrderedSet {} ;

10 −− INITIALIZATION

12 rule i n i t {
from

14 lPack : MOFLeft ! ” ecore : : EPackage” ,
rPack : MOFRight ! ” ecore : : EPackage”

16 to
compPack : MOF! ” ecore : : EPackage” (

18 −− s e t t i n g name o f the new epackage
name <− lPack . name + ’ conta inment ’ + rPack . name ,

20 −− s e t t i n g the e c l a s s i f i e s from l e f t and r i g h t meta model
e C l a s s i f i e r s <− lPack . e C l a s s i f i e r s ,

22 e C l a s s i f i e r s <− rPack . e C l a s s i f i e r s
)

24 }
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26 −− MANAGING ECLASSES

28 rule CLASSLeft {
from

30 l : MOFLeft ! ” ecore : : EClass ”
to

32 comp : MOF! ” ecore : : EClass ” (
−− f o r l e f t eC la s se s we j u s t need to put them as they are

in the r e s u l t mm
34 name <− l . name ,

eSuperTypes <− l . eSuperTypes ,
36 eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s

)
38 }

40 rule CLASSRight1 {
from

42 l : MOFRight ! ” ecore : : EClass ” ( @@containedList1@@ )
to

44 comp : MOF! ” ecore : : EClass ” (
−− f o r l e f t eC la s se s we j u s t need to put them as they are

in the r e s u l t mm
46 name <− l . name ,

eSuperTypes <− l . eSuperTypes ,
48 eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s

) ,
50 comp2 : MOF! ” ecore : : EReference ” (

−− l e f t mm eReferences j u s t need to be cop ied in the
r e s u l t mm

52 name <− l . name . toLower ( ) ,
containment <− true ,

54 lowerBound <− @@lBoundList@@ ,
upperBound <− @@uBoundList@@ ,

56 eType <− comp
)

58 do {
thisModule . ReferencesForContainmentToList ( comp2) ;

60 }
}

62

rule CLASSRight2 {
64 from

l : MOFRight ! ” ecore : : EClass ” ( @@containedList2@@ )
66 to
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comp : MOF! ” ecore : : EClass ” (
68 −− f o r l e f t eC la s se s we j u s t need to put them as they are

in the r e s u l t mm
name <− l . name ,

70 eSuperTypes <− l . eSuperTypes ,
eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s

72 )
}

74

−− MANAGING EATTRIBUTES
76

rule ATRLeft {
78 from

l : MOFLeft ! ” ecore : : EAttr ibute ”
80 to

comp : MOF! ” ecore : : EAttr ibute ” (
82 −− e a t t r i b u t e s from l e f t mm j u s t need to be put in the

r e s u l t mm
name <− l . name ,

84 eType <− l . eType
)

86 }

88 rule ATRRight {
from

90 l : MOFRight ! ” ecore : : EAttr ibute ”
to

92 comp : MOF! ” ecore : : EAttr ibute ” (
−− e a t t r i b u t e s from l e f t mm j u s t need to be put in the

r e s u l t mm
94 name <− l . name ,

eType <− l . eType
96 )

}
98

−− MANAGING EREFRENCES
100

rule REFLeft {
102 from

l : MOFLeft ! ” ecore : : EReference ”
104 to

comp : MOF! ” ecore : : EReference ” (
106 −− l e f t mm eReferences j u s t need to be cop ied in the

r e s u l t mm
name <− l . name ,
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108 upperBound <− l . upperBound ,
eType <− l . eType ,

110 containment <− l . containment
)

112 }

114 rule REFRight {
from

116 l : MOFRight ! ” ecore : : EReference ”
to

118 comp : MOF! ” ecore : : EReference ” (
−− l e f t mm eReferences j u s t need to be cop ied in the

r e s u l t mm
120 name <− l . name ,

upperBound <− l . upperBound ,
122 eType <− l . eType ,

containment <− l . containment
124 )

}
126

−− FEELING COLLECTION RULES
128

rule ReferencesForContainmentToList ( e : MOF! EReference ) {
130 do {

thisModule . re ferencesForConta inment <− thisModule .
re ferencesForContainment−>append ( e ) ;

132 }
}

134

−− EXECUTION OF DELAYED ACTIONS
136

endpoint rule EndRule ( ) {
138 do {

f o r ( dta in thisModule . re ferencesForConta inment ) {
140 (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e . name = ’

@@containerCName@@ ’ ) ) . eS t ruc tu ra lFea tu r e s <− dta ;
}

142 }
}� �
A.2.5 Template for Inherit Operator

Listing A.6. ATL Template Transformation for Inherit operator� �
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−− @at lcompi l er a t l 2006
2 module i nhe r i t exe cu t e metamode l t r ans f o rmat i on ; −− Module

Template
create metamodelcomposed : MOF from modelLeft : MOFLeft ,

modelRight : MOFRight ;
4

−− INITIALIZATION
6

rule i n i t {
8 from

lPack : MOFLeft ! ” ecore : : EPackage” ,
10 rPack : MOFRight ! ” ecore : : EPackage”

to
12 compPack : MOF! ” ecore : : EPackage” (

−− s e t t i n g name o f the new epackage
14 name <− lPack . name + ’ i n h e r i t ’ + rPack . name ,

−− s e t t i n g the e c l a s s i f i e s from l e f t and r i g h t meta model
16 e C l a s s i f i e r s <− lPack . e C l a s s i f i e r s ,

e C l a s s i f i e r s <− rPack . e C l a s s i f i e r s
18 )

}
20

−− MANAGING ECLASSES
22

rule CLASSLeft {
24 from

l : MOFLeft ! ” ecore : : EClass ”
26 to

comp : MOF! ” ecore : : EClass ” (
28 −− f o r l e f t eC la s se s we j u s t need to put them as they are

in the r e s u l t mm
name <− l . name ,

30 eSuperTypes <− l . eSuperTypes ,
eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s

32 )
}

34

rule CLASSRight {
36 from

l : MOFRight ! ” ecore : : EClass ”
38 to

comp : MOF! ” ecore : : EClass ” (
40 −− f o r l e f t eC la s se s we j u s t need to put them as they are

in the r e s u l t mm
name <− l . name ,
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42 eSuperTypes <− l . eSuperTypes ,
eS t ruc tu ra lFea tu r e s <− l . eS t ruc tu ra lFea tu r e s

44 )
do {

46 i f (comp . name=’ @@special izat ionClass@@ ’ ) {
comp . eSuperTypes <− (MOF! EClass . a l l I n s t a n c e s ( )−>any ( e | e .

name = ’ @@specializedClass@@ ’ ) ) ;
48 }

−−th isModule . ReferencesForContainmentToList (comp2) ;
50 }

}
52

−− MANAGING EATTRIBUTES
54

rule ATRLeft {
56 from

l : MOFLeft ! ” ecore : : EAttr ibute ”
58 to

comp : MOF! ” ecore : : EAttr ibute ” (
60 −− e a t t r i b u t e s from l e f t mm j u s t need to be put in the

r e s u l t mm
name <− l . name ,

62 eType <− l . eType
)

64 }

66 rule ATRRight {
from

68 l : MOFRight ! ” ecore : : EAttr ibute ”
to

70 comp : MOF! ” ecore : : EAttr ibute ” (
−− e a t t r i b u t e s from l e f t mm j u s t need to be put in the

r e s u l t mm
72 name <− l . name ,

eType <− l . eType
74 )

}
76

−− MANAGING EREFRENCES
78

rule REFLeft {
80 from

l : MOFLeft ! ” ecore : : EReference ”
82 to

comp : MOF! ” ecore : : EReference ” (
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84 −− l e f t mm eReferences j u s t need to be copied in the
r e s u l t mm

name <− l . name ,
86 upperBound <− l . upperBound ,

eType <− l . eType ,
88 containment <− l . containment

)
90 }

92 rule REFRight {
from

94 l : MOFRight ! ” ecore : : EReference ”
to

96 comp : MOF! ” ecore : : EReference ” (
−− l e f t mm eReferences j u s t need to be cop ied in the

r e s u l t mm
98 name <− l . name ,

upperBound <− l . upperBound ,
100 eType <− l . eType ,

containment <− l . containment
102 )

}� �
A.3 ATL Transformation Rules Generation

Templates

You can find here the code listings for the ATL Transformation Rules Gen-
eration Templates for each meta model composition operator.

A.3.1 Template for Association, Containment and In-
herit Operators

Listing A.7. ATL Transformation Rules Templates for Association, Containment
and Inherit Operator� �
−− @at lcompi l er a t l 2006

2 module gene r a t e mode l t r an s f o rmat i on ru l e s ; −− Module Template
create t rRu le s : TrRulesMM from mmLeft : MOF, mmRight : MOF;

4

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package



A.3. ATL Transformation Rules Generation Templates 125

6 helper context MOF! EClass def : getRulesExpForAttr ibutes ( ) :
OrderedSet (MOF! EAttr ibute ) =

s e l f . eAtt r ibutes−>i t e r a t e ( c ; e lements : OrderedSet (MOF!
EAttr ibute ) =

8 OrderedSet{} | e lements . append ( c . debug ( ’ a t t r i bu t e ’ ) )
)

10 ;

12 −− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

helper context MOF! EClass def : getRulesExpForReferences ( ) :
OrderedSet (MOF! EReference ) =

14 s e l f . eReferences−>i t e r a t e ( c ; e lements : OrderedSet (MOF!
EReference ) =

OrderedSet{} | e lements . append ( c . debug ( ’ r e f e r e n c e ’ ) )
16 )

;
18

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

20 helper context MOF! EPackage def : getRulesExpForClasses ( ) :
OrderedSet (MOF! EClass ) =

s e l f . e C l a s s i f i e r s −>i t e r a t e ( c ; e lements : OrderedSet (MOF!
EClass ) =

22 OrderedSet{} | e lements . append ( c . debug ( ’ c l a s s ’ ) )
)

24 ;

26 rule i n i t 1 {
from

28 pack : MOF! ” ecore : : EPackage” ( pack . name=’@@leftPackageName@@
’ )

to
30 root : TrRulesMM ! Root (

l e f t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name=’
@@leftRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4LeftEClassesA ( e , pack ) ) ,

32 l e f t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name<> ’
@@leftRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4LeftEClassesB ( e , pack ) )

34 )
do {

36 pack . name . debug ( ’T1 ’ ) ;
}
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38 }

40

rule i n i t 2 {
42 from

pack : MOF! ” ecore : : EPackage” ( pack . name=’
@@rightPackageName@@ ’ )

44 to
root : TrRulesMM ! Root (

46 r i g h t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name=’
@@rightRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4RightEClassesA ( e , pack ) ) ,

r i g h t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name<> ’
@@rightRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4RightEClassesB ( e , pack ) )

48

)
50 do {

pack . name . debug ( ’T2 ’ ) ;
52 }

}
54

lazy rule TrRule4LeftEClassesA {
56 from

currentEClass : MOF! ” ecore : : EClass ” ,
58 currentPack : MOF! ” ecore : : EPackage”

to
60 ru l eExpre s s i on : TrRulesMM ! TrRule (

ruleExp <− ’ r u l e L ’+currentEClass . name+’ { ’
62 +’ from pack : MMLeft ! ” ’+currentEClass . name+’ ” ’

+’ to newlPack : ComposedMM!” ’+currentEClass . name+’
”( ’

64 )
do {

66 −− CASE OF LAZY RULE 4 PACKAGE

68 −− f o r a t t r i b u t e s
currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
70 f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

72 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {
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ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

74 }
}

76 −− f o r r e f e r enc e s
currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
78 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

80 }
f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

82 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name+’−>c o l l e c t ( e |
thisModule . L ’+dta . eReferenceType . name+’ ( e ) ) ’ ;

i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

84 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
86 }

−− f o r c l o s i n g the ru l e
88 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
90 }

92 lazy rule TrRule4LeftEClassesB {
from

94 currentEClass : MOF! ” ecore : : EClass ” ,
currentPack : MOF! ” ecore : : EPackage”

96 to
ru l eExpre s s i on : TrRulesMM ! TrRule (

98

ruleExp <− i f (
100 currentPack . e C l a s s i f i e r s

−>any ( e | e . name = ’@@leftRootCName@@ ’ ) . eRe f e r ence s
102 −>s e l e c t ( f | f . eType=currentEClass ) . s i z e ( ) >0)

then (
104 ’ l a zy ru l e L ’+currentEClass . name+’ { ’

+ ’ from pack : MMLeft ! ” ’+currentEClass . name+’ ” ’
106 +’ to newlPack : ComposedMM!” ’+currentEClass . name+’

”( ’
)

108 else (
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’ r u l e L ’+currentEClass . name+’ { ’
110 +’ from pack : MMLeft ! ” ’+currentEClass . name+’ ” ’

+’ to newlPack : ComposedMM!” ’+currentEClass . name+’
”( ’

112 )
endif

114 )
do {

116 −− DEFAULT CASE

118 −− f o r a t t r i b u t e s
currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
120 f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

122 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

124 }
}

126 −− f o r r e f e r enc e s
currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
128 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

130 }
f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

132 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

134 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
136 }

−− f o r c l o s i n g the ru l e
138 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
140 }



A.3. ATL Transformation Rules Generation Templates 129

142 lazy rule TrRule4RightEClassesA {
from

144 currentEClass : MOF! ” ecore : : EClass ” ,
currentPack : MOF! ” ecore : : EPackage”

146 to
ru l eExpre s s i on : TrRulesMM ! TrRule (

148 ruleExp <− ’ r u l e R ’+currentEClass . name+’ { ’
+ ’ from pack : MMRight ! ” ’+currentEClass . name+’ ” ’

150 +’ to newrPack : ComposedMM!” ’+currentEClass . name+’
”( ’

)
152 do {

−− CASE OF LAZY RULE 4 PACKAGE
154

−− f o r a t t r i b u t e s
156 currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

158 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

160 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
162 }

−− f o r r e f e r enc e s
164 currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
166 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

}
168 f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name+’−>c o l l e c t ( e |
thisModule . R ’+dta . eReferenceType . name+’ ( e ) ) ’ ;

170 i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

172 }
}
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174 −− f o r c l o s i n g the ru l e
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

176 }
}

178

lazy rule TrRule4RightEClassesB {
180 from

currentEClass : MOF! ” ecore : : EClass ” ,
182 currentPack : MOF! ” ecore : : EPackage”

to
184 ru l eExpre s s i on : TrRulesMM ! TrRule (

ruleExp <− i f (
186 currentPack . e C l a s s i f i e r s

−>any ( e | e . name = ’@@rightRootCName@@ ’ ) . eRe f e r ence s
188 −>s e l e c t ( f | f . eType=currentEClass ) . s i z e ( ) >0)

then (
190 ’ l a zy ru l e R ’+currentEClass . name+’ { ’

+ ’ from pack : MMRight ! ” ’+currentEClass . name+’ ” ’
192 +’ to newrPack : ComposedMM!” ’+currentEClass . name+’

”( ’
)

194 else (
’ r u l e R ’+currentEClass . name+’ { ’

196 +’ from pack : MMRight ! ” ’+currentEClass . name+’ ” ’
+’ to newrPack : ComposedMM!” ’+currentEClass . name+’

”( ’
198 )

endif
200 )

do {
202 −− DEFAULT CASE

204 −− f o r a t t r i b u t e s
currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
206 f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

208 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

210 }
}
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212 −− f o r r e f e r enc e s
currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
214 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

216 }
f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

218 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

220 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
222 }

−− f o r c l o s i n g the ru l e
224 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
226 }� �

A.3.2 Template for Union Operator

Listing A.8. ATL Transformation Rules Templates for Union Operator� �
−− @at lcompi l er a t l 2006

2 module un i on gene ra t e mode l t r an s f o rmat i on ru l e s ; −− Module
Template

create t rRu le s : TrRulesMM from mmLeft : MOFL, mmRight : MOFR;
4

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

6 helper context MOFL! EClass def : getRulesExpForAttr ibutes ( ) :
OrderedSet (MOFL! EAttr ibute ) =

s e l f . eAtt r ibutes−>i t e r a t e ( c ; e lements : OrderedSet (MOFL!
EAttr ibute ) =

8 OrderedSet{} | e lements . append ( c . debug ( ’ a t t r i bu t e ’ ) )
)

10 ;

12 −− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package
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helper context MOFL! EClass def : getRulesExpForReferences ( ) :
OrderedSet (MOFL! EReference ) =

14 s e l f . eReferences−>i t e r a t e ( c ; e lements : OrderedSet (MOFL!
EReference ) =

OrderedSet{} | e lements . append ( c . debug ( ’ r e f e r e n c e ’ ) )
16 )

;
18

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

20 helper context MOFL! EPackage def : getRulesExpForClasses ( ) :
OrderedSet (MOFL! EClass ) =

s e l f . e C l a s s i f i e r s −>i t e r a t e ( c ; e lements : OrderedSet (MOFL!
EClass ) =

22 OrderedSet{} | e lements . append ( c . debug ( ’ c l a s s ’ ) )
)

24 ;

26 −− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

helper context MOFL! EPackage def : getAl lClassesNames ( ) :
OrderedSet (String ) =

28 s e l f . e C l a s s i f i e r s −>i t e r a t e ( c ; e lements : OrderedSet (String )
=

OrderedSet{} | e lements . append ( c . name)
30 )

;
32

helper def : thePackageFromLeftMM : MOFL! EPackage = MOFL! EPackage
;

34

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

36 helper context MOFR! EClass def : i s I nL e f t ( ) : Boolean =
i f ( (MOFL! EPackage . e C l a s s i f i e r s −>s e l e c t ( e | t rue ) ) . i n c l ud e s (

s e l f )=true )
38 then ( t rue )

else ( f a l s e )
40 endif

;
42

rule i n i t 1 {
44 from

pack : MOFL! ” ecore : : EPackage” ( pack . name=’
@@leftPackageName@@ ’ )
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46 to
root : TrRulesMM ! Root (

48 l e f t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name=’
@@leftRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4LeftEClassesA ( e , pack ) ) ,

l e f t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name<> ’
@@leftRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4LeftEClassesB ( e , pack ) )

50 )
do {

52 pack . name . debug ( ’T1 ’ ) ;
thisModule . thePackageFromLeftMM<−pack ;

54 }
}

56

58 rule i n i t 2 {
from

60 pack : MOFR! ” ecore : : EPackage” ( pack . name=’
@@rightPackageName@@ ’ )

to
62 root : TrRulesMM ! Root (

r i g h t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name=’
@@rightRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4RightEClassesA ( e , pack ) ) ,

64 r i g h t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name<> ’
@@rightRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4RightEClassesB ( e , pack ) )

)
66 do {

pack . name . debug ( ’T2 ’ ) ;
68 }

}
70

lazy rule TrRule4LeftEClassesA {
72 from

currentEClass : MOFL! ” ecore : : EClass ” ,
74 currentPack : MOFL! ” ecore : : EPackage”

to
76 ru l eExpre s s i on : TrRulesMM ! TrRule (

ruleExp <− ’ r u l e L ’+currentEClass . name+’ { ’
78 +’ from pack : MMLeft ! ” ’+currentEClass . name+’ ” ’

+’ to newlPack : ComposedMM!” ’+currentEClass . name+’
”( ’

80 )
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do {
82 −− CASE OF LAZY RULE 4 PACKAGE

84 −− f o r a t t r i b u t e s
currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
86 f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

88 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

90 }
}

92 −− f o r r e f e r enc e s
currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
94 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

96 }
f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

98 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name+’−>c o l l e c t ( e |
thisModule . L ’+dta . eReferenceType . name+’ ( e ) ) ’ ;

i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

100 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
102 }

−− f o r c l o s i n g the ru l e
104 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
106 }

108 lazy rule TrRule4LeftEClassesB {
from

110 currentEClass : MOFL! ” ecore : : EClass ” ,
currentPack : MOFL! ” ecore : : EPackage”

112 to
ru l eExpre s s i on : TrRulesMM ! TrRule (
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114

ruleExp <− i f (
116 currentPack . e C l a s s i f i e r s

−>any ( e | e . name = ’@@leftRootCName@@ ’ ) . eRe f e r ence s
118 −>s e l e c t ( f | f . eType=currentEClass ) . s i z e ( ) >0)

then (
120 ’ l a zy ru l e L ’+currentEClass . name+’ { ’

+ ’ from pack : MMLeft ! ” ’+currentEClass . name+’ ” ’
122 +’ to newlPack : ComposedMM!” ’+currentEClass . name+’

”( ’
)

124 else (
’ r u l e L ’+currentEClass . name+’ { ’

126 +’ from pack : MMLeft ! ” ’+currentEClass . name+’ ” ’
+’ to newlPack : ComposedMM!” ’+currentEClass . name+’

”( ’
128 )

endif
130 )

do {
132 −− DEFAULT CASE

134 −− f o r a t t r i b u t e s
currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
136 f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

138 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

140 }
}

142 −− f o r r e f e r enc e s
currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
144 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

146 }
f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

148 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;
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i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

150 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
152 }

−− f o r c l o s i n g the ru l e
154 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
156 }

158 lazy rule TrRule4RightEClassesA {
from

160 currentEClass : MOFR! ” ecore : : EClass ” ,
currentPack : MOFR! ” ecore : : EPackage”

162 to
ru l eExpre s s i on : TrRulesMM ! TrRule (

164 ruleExp <− i f ( thisModule . thePackageFromLeftMM .
getAl lClassesNames ( ) . i n c l ud e s ( currentEClass . name) )

then (
166 −− i f we need to rename

’ r u l e R ’+currentEClass . name+’ { ’
168 +’ from pack : MMRight ! ” ’+currentEClass . name+’ ” ’

+’ to newrPack : ComposedMM!” ’+currentEClass . name+’
RMM”( ’

170 )
else (

172 −− no renaming
’ r u l e R ’+currentEClass . name+’ { ’

174 +’ from pack : MMRight ! ” ’+currentEClass . name+’ ” ’
+’ to newrPack : ComposedMM!” ’+currentEClass . name+’

”( ’
176 )

endif
178 )

do {
180 −− CASE OF LAZY RULE 4 PACKAGE

182 −− f o r a t t r i b u t e s
currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
184 f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;
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186 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

188 }
}

190 −− f o r r e f e r enc e s
currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
192 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

194 }
f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

196 i f ( thisModule . thePackageFromLeftMM . getAl lClassesNames
( ) . i n c l ud e s ( currentEClass . name) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’
+dta . name+’ RMM <− pack . ’+dta . name+’−>c o l l e c t ( e |

thisModule . R ’+dta . eReferenceType . name+’ ( e ) ) ’
;

198 }
else {

200 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’
+dta . name+’ <− pack . ’+dta . name+’−>c o l l e c t ( e |
thisModule . R ’+dta . eReferenceType . name+’ ( e ) ) ’ ;

}
202

i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

204 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
206 }

−− f o r c l o s i n g the ru l e
208 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
210 }

212 lazy rule TrRule4RightEClassesB {
from

214 currentEClass : MOFR! ” ecore : : EClass ” ,
currentPack : MOFR! ” ecore : : EPackage”

216 to
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ru l eExpre s s i on : TrRulesMM ! TrRule (
218 ruleExp <− i f ( thisModule . thePackageFromLeftMM .

getAl lClassesNames ( ) . i n c l ud e s ( currentEClass . name) )
then (

220 −− i f we need to rename
i f (

222 currentPack . e C l a s s i f i e r s
−>any ( e | e . name = ’@@rightRootCName@@ ’ ) .

eRe f e r ence s
224 −>s e l e c t ( f | f . eType=currentEClass ) . s i z e ( ) >0)

then (
226 ’ l a zy ru l e R ’+currentEClass . name+’ { ’

+ ’ from pack : MMRight ! ” ’+currentEClass . name+’ ”
’

228 +’ to newrPack : ComposedMM!” ’+currentEClass .
name+’ RMM”( ’

)
230 else (

’ r u l e R ’+currentEClass . name+’ { ’
232 +’ from pack : MMRight ! ” ’+currentEClass . name+’ ”

’
+’ to newrPack : ComposedMM!” ’+currentEClass .

name+’ RMM”( ’
234 )

endif
236 )

else (
238 −− no renaming

i f (
240 currentPack . e C l a s s i f i e r s

−>any ( e | e . name = ’@@rightRootCName@@ ’ ) .
eRe f e r ence s

242 −>s e l e c t ( f | f . eType=currentEClass ) . s i z e ( ) >0)
then (

244 ’ l a zy ru l e R ’+currentEClass . name+’ { ’
+ ’ from pack : MMRight ! ” ’+currentEClass . name+’ ”

’
246 +’ to newrPack : ComposedMM!” ’+currentEClass .

name+’ ”( ’
)

248 else (
’ r u l e R ’+currentEClass . name+’ { ’

250 +’ from pack : MMRight ! ” ’+currentEClass . name+’ ”
’



A.3. ATL Transformation Rules Generation Templates 139

+’ to newrPack : ComposedMM!” ’+currentEClass .
name+’ ”( ’

252 )
endif

254 )
endif

256 )
do {

258 −− DEFAULT CASE

260 −− f o r a t t r i b u t e s
currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
262 f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

264 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

266 }
}

268 −− f o r r e f e r enc e s
currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
270 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

272 }
f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

274 i f ( thisModule . thePackageFromLeftMM . getAl lClassesNames
( ) . i n c l ud e s ( currentEClass . name) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’
+dta . name+’ RMM <− pack . ’+dta . name ;

276 }
else {

278 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’
+dta . name+’ <− pack . ’+dta . name ;

}
280

i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {
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282 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
284 }

−− f o r c l o s i n g the ru l e
286 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
288 }� �

A.3.3 Template for Merge Operator

Listing A.9. ATL Transformation Rules Templates for Merge Operator� �
−− @at lcompi l er a t l 2006

2 module merge gene ra t e mode l t r an s f o rmat i on ru l e s ; −− Module
Template

create t rRu le s : TrRulesMM from mmLeft : MOFL, mmRight : MOFR;
4

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

6 helper context MOFL! EClass def : getRulesExpForAttr ibutes ( ) :
OrderedSet (MOFL! EAttr ibute ) =

s e l f . eAtt r ibutes−>i t e r a t e ( c ; e lements : OrderedSet (MOFL!
EAttr ibute ) =

8 OrderedSet{} | e lements . append ( c . debug ( ’ a t t r i bu t e ’ ) )
)

10 ;

12 −− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

helper context MOFL! EClass def : getRulesExpForReferences ( ) :
OrderedSet (MOFL! EReference ) =

14 s e l f . eReferences−>i t e r a t e ( c ; e lements : OrderedSet (MOFL!
EReference ) =

OrderedSet{} | e lements . append ( c . debug ( ’ r e f e r e n c e ’ ) )
16 )

;
18

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

20 helper context MOFL! EPackage def : getRulesExpForClasses ( ) :
OrderedSet (MOFL! EClass ) =

s e l f . e C l a s s i f i e r s −>i t e r a t e ( c ; e lements : OrderedSet (MOFL!
EClass ) =
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22 OrderedSet{} | e lements . append ( c . debug ( ’ c l a s s ’ ) )
)

24 ;

26 −− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

helper context MOFL! EPackage def : getAl lClassesNames ( ) :
OrderedSet (String ) =

28 ( s e l f . e C l a s s i f i e r s −>c o l l e c t ( e | e . eRe f e r ence s )−> f l a t t e n ( )−>
asSet ( ) )−> i t e r a t e ( c ; e lements : OrderedSet (String ) =

OrderedSet{} | e lements . append ( c . name)
30 )

;
32

helper def : thePackageFromLeftMM : MOFL! EPackage = MOFL! EPackage
;

34

−− method f o r g e t t i n g a c o l l e c t i o n o f a l l t he c l a s s names from
the l e f t package

36 helper context MOFR! EClass def : i s I nL e f t ( ) : Boolean =
i f ( (MOFL! EPackage . e C l a s s i f i e r s −>s e l e c t ( e | t rue ) ) . i n c l ud e s (

s e l f )=true )
38 then ( t rue )

else ( f a l s e )
40 endif

;
42

44 rule i n i t 1 {
from

46 pack : MOFL! ” ecore : : EPackage” ( pack . name=’
@@leftPackageName@@ ’ )

to
48 root : TrRulesMM ! Root (

l e f t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name=’
@@leftRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4LeftEClassesA ( e , pack ) ) ,

50 l e f t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name<> ’
@@leftRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4LeftEClassesB ( e , pack ) )

)
52 do {

pack . name . debug ( ’T1 ’ ) ;
54 thisModule . thePackageFromLeftMM<−pack ;

}
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56 }

58 rule i n i t 2 {
from

60 pack : MOFR! ” ecore : : EPackage” ( pack . name=’
@@rightPackageName@@ ’ )

to
62 root : TrRulesMM ! Root (

r i g h t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name=’
@@rightRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4RightEClassesA ( e , pack ) ) ,

64 r i g h t <− pack . e C l a s s i f i e r s −>s e l e c t ( a | a . name<> ’
@@rightRootCName@@ ’ )−>c o l l e c t ( e | thisModule .
TrRule4RightEClassesB ( e , pack ) )

)
66 do {

pack . name . debug ( ’T2 ’ ) ;
68 }

}
70

lazy rule TrRule4LeftEClassesA {
72 from

currentEClass : MOFL! ” ecore : : EClass ” ,
74 currentPack : MOFL! ” ecore : : EPackage”

to
76 ru l eExpre s s i on : TrRulesMM ! TrRule (

ruleExp <− ’ r u l e L ’+currentEClass . name+’ { ’
78 +’ from pack : MMLeft ! ” ’+currentEClass . name+’ ” ’

+’ to newlPack : ComposedMM!” ’+currentEClass . name+’
”( ’

80 )
do {

82 −− CASE OF LAZY RULE 4 PACKAGE

84 −− f o r a t t r i b u t e s
currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
86 f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

88 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;
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90 }
}

92 −− f o r r e f e r enc e s
currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
94 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

96 }
f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

98 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name+’−>c o l l e c t ( e |
thisModule . L ’+dta . eReferenceType . name+’ ( e ) ) ’ ;

i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

100 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
102 }

−− f o r c l o s i n g the ru l e
104 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
106 }

108 lazy rule TrRule4LeftEClassesB {
from

110 currentEClass : MOFL! ” ecore : : EClass ” ,
currentPack : MOFL! ” ecore : : EPackage”

112 to
ru l eExpre s s i on : TrRulesMM ! TrRule (

114

ruleExp <− i f (
116 currentPack . e C l a s s i f i e r s

−>any ( e | e . name = ’@@leftRootCName@@ ’ ) . eRe f e r ence s
118 −>s e l e c t ( f | f . eType=currentEClass ) . s i z e ( ) >0)

then (
120 ’ l a zy ru l e L ’+currentEClass . name+’ { ’

+ ’ from pack : MMLeft ! ” ’+currentEClass . name+’ ” ’
122 +’ to newlPack : ComposedMM!” ’+currentEClass . name+’

”( ’
)

124 else (
’ r u l e L ’+currentEClass . name+’ { ’

126 +’ from pack : MMLeft ! ” ’+currentEClass . name+’ ” ’
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+’ to newlPack : ComposedMM!” ’+currentEClass . name+’
”( ’

128 )
endif

130 )
do {

132 −− DEFAULT CASE

134 −− f o r a t t r i b u t e s
currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
136 f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

138 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

140 }
}

142 −− f o r r e f e r enc e s
currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
144 i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

146 }
f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

148 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

150 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
152 }

−− f o r c l o s i n g the ru l e
154 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
156 }

158 lazy rule TrRule4RightEClassesA {
from
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160 currentEClass : MOFR! ” ecore : : EClass ” ,
currentPack : MOFR! ” ecore : : EPackage”

162 to
ru l eExpre s s i on : TrRulesMM ! TrRule (

164 ruleExp <− ’ r u l e R ’+currentEClass . name+’ { ’
+ ’ from pack : MMRight ! ” ’+currentEClass . name+’ ” ’

166 +’ to newrPack : ComposedMM!” ’+currentEClass . name+’
”( ’

)
168 do {

−− CASE OF LAZY RULE 4 PACKAGE
170

−− f o r a t t r i b u t e s
172 currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {

174 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+
dta . name+’ <− pack . ’+dta . name ;

i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (
dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

176 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
178 }

−− f o r r e f e r enc e s
180 currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
182 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

}
184 f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

i f ( thisModule . thePackageFromLeftMM . getAl lClassesNames
( ) . i n c l ud e s ( dta . name) ) {

186 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’
+dta . name+’ RMM <− pack . ’+dta . name+’ RMM−>c o l l e c t
( e | thisModule . R ’+dta . eReferenceType . name+’ ( e )
) ’ ;

}
188 else {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’
+dta . name+’ <− pack . ’+dta . name+’−>c o l l e c t ( e |
thisModule . R ’+dta . eReferenceType . name+’ ( e ) ) ’ ;

190 }
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i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (
dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

192 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
194 }

−− f o r c l o s i n g the ru l e
196 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
198 }

200 lazy rule TrRule4RightEClassesB {
from

202 currentEClass : MOFR! ” ecore : : EClass ” ,
currentPack : MOFR! ” ecore : : EPackage”

204 to
ru l eExpre s s i on : TrRulesMM ! TrRule (

206 ruleExp <− i f (
currentPack . e C l a s s i f i e r s

208 −>any ( e | e . name = ’@@rightRootCName@@ ’ ) .
eRe f e r ence s

−>s e l e c t ( f | f . eType=currentEClass ) . s i z e ( ) >0)
210 then (

’ l a zy ru l e R ’+currentEClass . name+’ { ’
212 +’ from pack : MMRight ! ” ’+currentEClass . name+’ ”

’
+’ to newrPack : ComposedMM!” ’+currentEClass .

name+’ ”( ’
214 )

else (
216 ’ r u l e R ’+currentEClass . name+’ { ’

+ ’ from pack : MMRight ! ” ’+currentEClass . name+’ ”
’

218 +’ to newrPack : ComposedMM!” ’+currentEClass .
name+’ ”( ’

)
220 endif

)
222 do {

−− DEFAULT CASE
224

−− f o r a t t r i b u t e s
226 currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( ) . debug ( ’

s i z eO fAt t r i bu t e s ’ ) ;
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f o r ( dta in currentEClass . getRulesExpForAttr ibutes ( ) ) {
228 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’+

dta . name+’ <− pack . ’+dta . name ;
i f ( currentEClass . getRulesExpForAttr ibutes ( ) . indexOf (

dta )<>currentEClass . getRulesExpForAttr ibutes ( ) . s i z e
( ) ) {

230 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
232 }

−− f o r r e f e r enc e s
234 currentEClass . getRulesExpForReferences ( ) . s i z e ( ) . debug ( ’

s i z eO fRe f e r enc e s ’ ) ;
i f ( currentEClass . getRulesExpForAttr ibutes ( ) . s i z e ( )>0 and

currentEClass . getRulesExpForReferences ( ) . s i z e ( ) >0) {
236 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ , ’ ;

}
238 f o r ( dta in currentEClass . getRulesExpForReferences ( ) ) {

i f ( thisModule . thePackageFromLeftMM . getAl lClassesNames
( ) . i n c l ud e s ( dta . name) ) {

240 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’
+dta . name+’ RMM <− pack . ’+dta . name+’ RMM’ ;

}
242 else {

ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ’
+dta . name+’ <− pack . ’+dta . name ;

244 }
i f ( currentEClass . getRulesExpForReferences ( ) . indexOf (

dta )<>currentEClass . getRulesExpForReferences ( ) . s i z e
( ) ) {

246 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ,
’ ;

}
248 }

−− f o r c l o s i n g the ru l e
250 ru l eExpre s s i on . ruleExp <− ru l eExpre s s i on . ruleExp+’ ) } ’ ;

}
252 }� �
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A.4 ATL Transformation for Model Compo-

sition Template

You can find here the code listing for the Transformation for Model Compo-
sition Template used by all meta model composition operators.

A.4.1 Template for all Operators

Listing A.10. ATL Transformation for Model Composition Template for all Oper-
ators� �
−− @at lcompi l er a t l 2006

2 module execute mode l t rans fo rmat ion ; −− Module Template
create newModel : ComposedMM from modelLeft : MMLeft , modelRight

: MMRight ;
4

−− INITIALIZATION
6 −− s imple copy o f the e lements o f l e f t and r i g h t models
−− to the new model conforming to composed meta model

8

@@modelTransformationRules@@
10

−− EXECUTION OF DELAYED ACTIONS
12 −− r u l e s depending on the opera tor

14 −− r u l e s f o r opera tor
endpoint rule EndRule ( ) {

16 do {
−− r u l e depending on opera tor

18 @@operatorRules@@
}

20 }� �
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Acronyms

ADT Abstract (Algebraic) Data Type

API Application Programming Interface

ATL ATLAS Transformation Language

CIM Computation Independent Model

COOPN Concurrent Object Oriented Petri Nets

DOM Document Object Model

DC Domain Concept

EMF Eclipse Modeling Framework

EPL Eclipse Public License

FST Formal Specification Techniques

GMT Generic Mapping Tools

GME Generic Modeling Environment

IDE Integrated Development Environment

INRIA Institut National de Recherche en Informatique et en Automatique
(France)

149
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IST Informal Structured Techniques

MDA Model-Driven Architecture

MOF Meta Object Facilities

MTV Model Transformation for Verification

OCL Object Constraint Language

OMG Object Management Group

OO Object Oriented

PDAs Personal Digital Assistants

PIM Platform Independent Model

PSM Platform Specific Model

PN Petri Nets

QVT Query/View/Transformation

RFP Request For Proposal

SMV Software Modeling and Verification

SUT System Under Test

UML Unified Modeling Language

URL Uniform Resource Locator

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

XMI XML Metadata Interchange
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